JoVE 과학 교육
Inorganic Chemistry
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 과학 교육 Inorganic Chemistry
Dye-sensitized Solar Cells
  • 00:04개요
  • 00:58Principles: Band Theory
  • 02:19Principles: Operation of Dye-sensitized Solar Cells
  • 03:56Protocol: Electrode fabrication
  • 06:06Protocol: Cell Construction and Evaluation
  • 07:36Representative Results
  • 08:32Applications
  • 10:06Summary

염료 감질 태양 전지

English

소셜에 공유하기

개요

출처: 타마라 M. 파워스, 텍사스 A&M 대학교 화학학과

오늘날의 현대 세계는 많은 양의 에너지를 사용해야 합니다. 석탄과 석유와 같은 화석 연료의 에너지를 활용하지만, 이러한 원천은 재생 불가능한 공급이므로 공급이 제한됩니다. 글로벌 라이프스타일을 유지하기 위해 재생 가능한 에너지원에서 에너지를 추출해야 합니다. 가장 유망한 재생 가능 원천은 태양으로, 지구에 여러 번 연료를 공급하기에 충분한 태양 에너지를 제공합니다.

그렇다면 태양으로부터 에너지를 어떻게 추출할까요? 자연은 그것을 알아 낸 첫번째이었다: 광합성은 식물이 탄수화물과 산소로 물과 이산화탄소를 변환하는 과정입니다. 이 과정은 식물의 잎에서 발생하고 잎을 녹색으로 착색엽소 안료에 의존합니다. 햇빛으로부터 에너지를 흡수하는 것은 이 착색분자이며, 화학 반응을 유도하는 흡수에너지입니다.

1839년, 아버지의 실험실에서 실험하던 19세의 프랑스 물리학자 에드먼드 베케렐(Edmond Becquerel)이 최초의 태양광 세포를 만들었습니다. 그는 전압과 전류를 생성 백금 전극에 연결된 은 염화물의 산성 용액을 조명했다. 1 20세기 후반과 상반기에 많은 발견과 발전이 이루어졌으며, 1954년에만 벨 연구소에 의해 최초의 실용적인 태양전지가 지어졌습니다. 1950년대부터 태양전지는 우주에서 위성에 전력을 공급하는 데 사용되었습니다. 2

태양 전지는 전류를 만들기 위해 빛을 활용하는 전기 장치입니다. 이 비디오는 이러한 유형의 셀, 염료 민감성 태양 전지(DSSC)의 준비 및 테스트를 보여줍니다. 브라이언 오레건과 마이클 그레첼이 UC 버클리에서 처음 발명한 그레첼은 스위스의 에콜 폴리테크닉대학 페데랄 드 로잔에서 이 작품을 추구했으며, 1991년 최초의 고효율 DSSC에 절정을 이루었습니다. 3 식물과 같은 이 태양전지는 염료를 사용하여 태양으로부터 에너지를 활용합니다.

Principles

Procedure

1. TiO2 페이스트 준비 콜로이드 TiO2 분말 6 g을 질량으로 하여 박격포에 놓습니다. TiO2에2-3 mL의 식초를 조심스럽게 추가하고 균일 한 페이스트를 얻을 때까지 유봉으로 서스펜션을 연마하기 시작합니다. 연삭은 분말의 응집된 덩어리를 분해하는 역할을 합니다. 식초를 계속 첨가하고, ~ 1mL 단위로 연삭하면서 최대 ~ 9mL의 총 부피를 추가하십시오. 각 첨…

Results

For each data point collected in steps 6.5.3-6.5.4, calculate the current density (mA/cm2) and the power density (mW/cm2). To calculate the current density, divide the current by the surface area of the film that was determined in step 2.7. To calculate the power density, multiply the voltage by current density. Plot the current (mA) versus voltage (mV) for the data collected in steps 6.3, 6.4, and 6.5.3-6.5.4. Plot the current density versus volts for all the data. This should be near the "knee" of the curve. Determine the sunlight to electrical energy conversion efficiency by dividing the maximum power (mW/cm2) by the incoming solar power (taken to be 800-1,000 W/m2), and multiplying by 100%.

The analysis of data and preparation of I-V curves is standard in the solar cell literature as a means to compare the performance of cells. The open-circuit voltage measured should be between 0.3 and 0.5 V, and a short circuit potential of 1-2 mA/cm2 should be obtained.

Applications and Summary

This video showed the preparation and analysis of a simple DSSC.

Solar cells are becoming more common, and there is much research being done to advance their performances. Traditional solar cells that are based on silicon semiconductors are used to make solar panels that are used in space and on earth. The Denver International Airport makes use of Colorado's sunny climate and has four solar arrays which provides 6% of the airport's energy needs.

DSSCs operate at efficiencies up to 15%,7 compared to 14-17% efficiency for traditional low-cost, commercial silicon panels. While operating efficiencies of DSSCs are competitive, the high-cost of materials (such as the Ru-dye) is problematic for large-scale applications. Possibly the greatest disadvantage of DSSCs is the use of a liquid electrolyte that is sensitive to temperature changes. The liquid electrolyte can freeze at low temperatures, thereby halting power production and/or resulting in structural damage to the solar panel. At high temperatures, the liquid electrolyte expands, which makes sealing the panels challenging.

References

  1. Williams, R. Becquerel Photovoltaic Effect in Binary Compounds. J Chem Phys, 32 (5), 1505-1514 (1960).
  2. Perlin (2005), Late 1950s – Saved by the Space Race", Solar Evolution – The history of Solar Energy. The Rahus Institute. Retrieved 28 June 2016.
  3. Regan, B., Gratzel, M. Nature, 353, 737-740 (1991).
  4. Miessler, G. L., Fischer, P. J., Tarr, D. A. Inorganic Chemistry, Pearson, 2014.
  5. Wikipedia page: Dye-sensitized solar cell,
  6. Smestad, G. P., Grätzel, M. Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter. J Chem Ed. 75 (6), 752 (1998).
  7. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Nazeeruddin, M. K., Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499 (7458), 316-9 (2013).

내레이션 대본

Dye-sensitized solar cells are a promising alternative to conventional semiconductor photovoltaics and have become commercially viable in recent years.

Dye-sensitized cells compensate for their lower efficiency by uniquely producing consistent power even at high temperatures, and high photon incidence angles, yielding nearly 50% more power than silicon solar cells under low light. They are considerably easier to manufacture and can use natural, abundant plant-based pigments as dyes. This video illustrates the operation of dye-sensitized solar cells, demonstrates an elementary procedure for creating test samples in the lab using plant pigments, and discusses a few applications.

All solar cells rely on the ability of light to donate energy to electrons to produce electric currents.

In single atoms, electrons are confined to discrete energy levels. However, when they absorb photons of light, the electrons temporarily ascend to higher energy levels, leaving a hole in the lower level.

When two atoms are in proximity, they perturb each other’s electrons. This creates new energy levels the electrons can occupy. As additional atoms are added, more energy levels form, ultimately coalescing into dense energy bands.

In semiconductors, the unoccupied energy levels form a high-energy conduction band, while occupied levels form a low-energy valence band. The energy difference is known as the “bandgap energy.” If a photon having the bandgap energy strikes an electron, the electron will be promoted, leaving a hole behind. Both electron and hole may be conducted from atom to atom until they recombine.

Now that we’ve seen how semiconductors absorb light energy, let’s see how we can harness this phenomenon in a dye-sensitized solar cell.

Unlike silicon solar cells, dye-sensitized solar cells separate the process of light absorption from that of current transmission, to lower the rate of recombination.

The cell contains a sensitizer dye, a semiconductor layer, an electrolyte, and two electrodes. The semiconductor is a stable dielectric, such as anatase TiO2. The electrolyte is typically an organic iodide, and the counter-electrode a corrosion- and heat-resistant material, often platinum or carbon.

The semiconductor is mesoporous and contains a monolayer of adsorbed dye. When a dye electron is excited by a photon, it is immediately injected into the semiconductor’s conduction band.

The semiconductor conveys the electron to the photoelectrode, and in turn to the circuit. The electron returns via the counter-electrode, where the spent electrolyte is reduced, completing the cycle.

Effective dyes respond to the entire visible spectrum. Early dyes included organic ruthenium complexes. These provide high conversion into the infrared, but are expensive and difficult to produce. Plant-based photosensitive pigments, such as carotenoids and anthocyanins, are more abundant and practical, albeit less efficient.

Those are the principles. Now let’s examine an elementary operating procedure in the lab.

The procedure demonstrated here allows dye-sensitized solar cells to be rapidly fabricated and tested, using only common precursors and laboratory materials.

Begin by adding 6 g of anatase TiO2 powder to a mortar. Add 2- 3 mL of vinegar, and grind the suspension to break up lumps. Iteratively add vinegar in 1 mL increments and grind, until a total of 9 mL have been added. The paste should ultimately be uniform.

Next, produce a surfactant solution by gently mixing one drop of dish soap with 1 mL of distilled water. Gently mix the surfactant solution into the paste, being careful not to produce bubbles. Allow the suspension to equilibrate

Clean two SnO2 coated conductive glass slides using a low lint wipe soaked in ethanol. Use a multimeter to find their conductive sides. The conductive side should have a resistance of 10-30 Ω.

Tape the slides to the bench, one conductive side up and the other conductive side down, such that 5-8 mm are masked and there are no air bubbles. Using a glass rod, apply a thin, uniform line of paste across the top edge of the conductive side. Let the film dry slightly, and remove the tape.

Dry the slide by placing it on a hot plate, conductive side up. The film will first darken to a purple-brown and then whiten. When this occurs, switch off the hot plate, keeping the slide on top. After it has cooled to room temperature, record the surface area of the film.

To prepare the counter-electrode, clean a second conductive glass slide. Apply the carbon catalyst to the conductive side. Hold the conductive side with tweezers over a lighter flame. Let the soot collect for no more than 30 sec. Reorient the slide with the tweezers and cover the remaining corner with soot in the same fashion, ensure the entire slide is covered.

Now that the electrodes have been prepared, let’s construct the dye-sensitized solar cell.

Use a spatula to crush a few raspberries, blackberries or cherries in a beaker. Then filter the solution into a Petri dish using a coffee filter, adding a few drops of distilled water if necessary.

Using tweezers, place the photoelectrode in the Petri dish, conductive side down, taking care not to scratch off the film. When staining is complete, carefully withdraw the slide and check that no white patches are visible. Rinse the slide in ethanol and blot dry.

Place the counter electrode face down on the film, maintaining an offset between the slides. Attach binder clips to the slide edges. Place a few drops of electrolyte along the edge, and let it seep over the film by slightly opening the binder clips. The cell is now ready for operation.

Prepare to measure the cell performance under a halogen lamp. Orient the cell so the photoelectrode is facing halogen lamp. Use a multimeter to measure the open circuit potential and the short-circuit current.

Next, connect the cell to a 500 Ω potentiometer to create the circuit shown in the text protocol. Sequentially increase the resistance through the potentiometer, and use the multimeter to measure the voltage and current.

The data collected is used to create a current-voltage curve, which describes the solar energy conversion of the solar cell and its solar efficiency.

The point where the curve crosses the x-axis is called the open circuit voltage, which is the maximum voltage at zero current. The point of maximum current at 0 V appears on the graph where the curve crosses the y-axis.

The maximum power point (MPP) occurs at the “knee” of the curve and provides the voltage and current conditions for ideal operation of the solar cell. The MPP of current-voltage curves provides a means to compare the performance of different solar cells. The open-circuit voltage measured in this experiment can reach values of 0.5 volts and a short circuit potential of 1-2 mA/cm2 .

Dye-sensitized solar cells are valuable in niche applications, and the approach in this video allows for rapid prototyping of cells with novel dyes.

Since dye-sensitized solar cells yield high power under low light, they are useful for “light harvesting,” the reuse of indoor light to power sensors, ID tags, data transmitters, and more. One way of accomplishing this is by developing dyes that introduce energy levels within the bandgap, from which electrons can upconvert into the conduction band. Empirically, this has doubled photon-to-electron conversion in near-infrared wavelengths by replacing a single high-energy absorption with two lower-energy absorptions.

Dye-sensitized cells are used for the production of photovoltaic windows, where TiO2 hollow glass microspheres are added to the electrodes to minimize pollution and to maintain the output. For this affordable manufacturing techniques, such as electrospinning, can be used, where a TiO2 slurry is slowly injected into an electric field to produce nanofibers for high-performance electrodes. Another fabrication technique is inkjet printing. This has been used to deposit electrodes on glass substrates, yielding cells with efficiencies of 3.5%.

You’ve just watched JoVE’s introduction to dye-sensitized solar cells. You should now be familiar with the operation of dye-sensitized cells, a procedure for inexpensively generating them in the lab, and some applications. As always, thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Dye-sensitized Solar Cells. JoVE, Cambridge, MA, (2023).