JoVE 과학 교육
Physics II
This content is Free Access.
JoVE 과학 교육 Physics II
Electric Potential
  • 00:06개요
  • 00:54Principles of Electric Potential
  • 04:01Electric Potential Around a Charged Sphere
  • 05:21Applications
  • 06:28Summary

電位

English

소셜에 공유하기

개요

ソース: 龍 p. 陳博士は、物理学科 & 天文学、科学の大学、パーデュー大学、ウェスト ラファイエット, インディアナ

電位とも呼ばれる「電圧」、単位電荷あたりの電気潜在的なエネルギーを測定します。電場はスカラー量であるし、多くの電気効果の基本であります。潜在的なエネルギーのような電位の違いは、物理的に意味があります。たとえば、電位の空間的変化は充電で電気の力に上昇を与える電界に関連です。抵抗の 2 点間の電位の違いは、電気電流を駆動します。

この実験は荷電球によって生成される電気潜在性 (より正確には、空間の二点間電位差) を示すために電圧計と蛍光管の両方を使用します。実験は、電場に垂直な等電位面の概念を示します。

Principles

点電荷 Q が原点に位置する (r = 0) 電位が生成されます。

Equation 1(関係式 1)

空間電荷から距離 r の任意の時点で (起源の r = 0)。方程式 1は一様に帯電球によって生成される電気潜在性についても説明します (r を中心とした = 0) (図 1) の球の外のスペースの総電荷量 Q と。両方のケースで (可能性はゼロ)「参照」点電荷から無限の距離です。電位は、電場の方向は、放射状の方向に沿って変化します。

2 点 P1と P2の距離 r1 r2原点 (電荷の中心) から、それぞれ、これらの 2 つの点の間の電位差はします。

Equation 2(式 2)

点 P2は、無限遠 (→∞) には場合、式 1式 2は下がります。したがって、これらの 2 つの点の起源 (充電部) 距離が異なる場合、2 点間の電位差があります。原点を中心とする球形の表面はこの場合「等電位表面」です。この場合、(半径方向) に沿って電場は電位面 (球) に垂直に注意してください。これは一般的に真であることが判明: 等電位面は電場の方向に垂直になります。

Figure 1

図 1:電動発電機に接続されている荷電球を示す図。電圧計を使用して、(球の中心から距離 r) と”A”の時点で電位を測定します。

Procedure

1. 帯電球による電位 金属球の電荷を置くことができますヴァン der グラフ ジェネレーターを取得します。球の中心は、この実験の原点として定義されます。 電圧計を取得します。(導電性ケーブルを使用して) その「−」ターミナル地面またはヴァン der グラフ ジェネレーターにターミナル参照または接続 (大導電管) など電気地面遠く (少なくとも数メートル) ジェネレーターから。その「+」端末を動かすことができる電圧プローブの先端で電圧計のケーブルに接続します。回路の接続を図 1に示します。 球を充電する少なくとも 10 ターン発電機のクランクを回します。 (電圧計の「+」端子に接続) 電圧プローブの先端を置くオン電圧計で起源から約 0.5 m です。必要に応じて、測定したり、あらかじめ距離をマークする定規を使用します。電圧電圧計の読みを記録します。先端を動かすが、原点からの距離を維持します。電圧計読書を観察します。 電圧プローブの先端がそれぞれ約 1 m と 1.5 m に配置されますと上記の手順を繰り返します。 (手持ち) 蛍光管を取得します。荷電球 (図 2 a) の中心から約 0.5 m にチューブをもたらします。最初に、それは球から放射状の方向に沿って、チューブを向けます。チューブ (相対的な暗闇の中での観察を容易にするため、ライトをオフにする) を確認します。90 度回転チューブは放射状の方向 (図 2 b) に垂直になるように。チューブを再度確認します。 図 2: 電動発電機に接続されている荷電球を示す図。蛍光管を使用して、チューブの 2 つの端間の電位差を示します。場合 (a) 管が放射状の方向に沿った(b) 管、半径方向に垂直に方向です。

Results

In steps 1.4-1.5, the voltmeter can be observed to give similar readings if the probe tip is kept at similar distances from the origin (that is, on an equipotential surface). However, the voltage drops if the probe moves farther away from the origin. The voltage reading at 1 m and 1.5 m away will be about 1/2 and 1/3 of the reading at 0.5 m away, respectively. If the voltage V measured versus the inverse distance (1/r) is plotted, a straight line results, as expected from Equation 1.

Applications and Summary

Electric potential (voltage) is ubiquitous and perhaps the most commonly used quantity in electricity. It is often much more convenient to use electric potential (which is a scalar) than electric field (which is a vector), even though the two can be related to each other. Electric potential difference is used to drive and control charge motion (accelerate/decelerate/deflect charges), for example in a TV screen or electron microscope. Electric potential difference (what we usually call voltage) is also what drives current flow in a conductor. Whenever one measures a voltage, one is measuring the electric potential difference between two points (one of which is sometimes a reference point or ground defined to have zero potential).

The author of the experiment acknowledges the assistance of Gary Hudson for material preparation and Chuanhsun Li for demonstrating the steps in the video.

내레이션 대본

Electric potential defines the energy of a charged particle. It gives rise to electric field and electric force, and is the basis of many electrical phenomena.

The term electrical potential is denoted by the Greek symbol Φ. It is a scalar quantity with a sign and magnitude. Any charge creates electric potential in the space around it. It is different from the term Voltage, although both these physical quantities are measured in Volts.

Here, we will first explain what these terms are, discuss the parameters that affect Φ, and then demonstrate the measurement of electric potential around a charged sphere.

As discussed in the Energy and Work video, potential energy of any object of mass m under the influence of gravitational acceleration g is equal to the amount of work needed to move that object by a height h from the ground. Mathematically, it is given by the formula mgh and has the unit of Joules.

Similarly, in the electric field E around a positively charged surface, the electrical potential energy at a specific point relative to a reference point is the amount of work necessary to move a positive test charge +q from the reference to that specific point. The distance between the two points is denoted by the letter d. Analogous to the gravitational potential energy, the electrical potential energy is the product of q, E, and d, and has the units of Joules.

Then, the electric potential or Φ at that point in the field is the electrical potential energy divided by ‘q’, the charge on the test charge. Therefore, the unit for Φ is joules per coulomb, AKA volts.

Now, if we consider another point in the field, it would have a different electric potential; say Φ0. The potential difference or Φdiff between the two points is known as voltage. This is the concept behind a battery, where the positive terminal is at a higher electric potential compared to the negative terminal and the difference between the two potentials is the voltage of the battery.

Coming back to electric potential, recall that it is a scalar quantity with a sign and magnitude. The sign depends on the source charge. Around an isolated positive charge, the potential is positive, whereas around an isolated negative charge it is negative.

The magnitude of the potential depends on the Q of the source charge producing the electric field, the distance d from the source charge, and the configuration.

For example, the electric potential at any given point around a point charge or a uniformly charged positive sphere with charge Q is given by this formula. It is evident that Φ is inversely proportional to the distance from the sphere. And the graph of electric potential magnitude versus distance is approaching zero at infinity.

This dependence on d also indicates that all locations at the same radius from the charged sphere would have the same potential. This means that there are equipotential surfaces of spherical shape around a charged sphere.

Now that we’ve explained the concepts behind electric potential and potential difference, let’s see how to validate these principles experimentally using a charged sphere.

This experiment uses a Van der Graff generator to charge a metal sphere. Connect the negative terminal of a voltmeter to the generator’s reference terminal or ground. Use a cable to connect the positive terminal of the voltmeter to a probe tip.

Turn the crank of the generator at least 10 times to charge the sphere then turn on the voltmeter and place the tip of the voltage probe about one-half meter away from the center of the sphere. Record the voltage reading at this location.

Move the probe tip around the sphere while maintaining a constant radius of one half meter from the center. During this time, observe the voltmeter measurements and note how the reading remains constant, indicating a spherical equipotential surface.

Repeat this procedure with the probe tip at a distance of one meter, and then one and a half meters from the center of the sphere.

The plot of measured potential versus distance displays a curve that decreases inversely with distance, which validates the theoretical relationship between electric potential and distance, for a charged sphere.

Electric potential is one of the most commonly used electrical quantities and is fundamental to the storage and release of electrical energy.

An electron microscope uses a high electric potential difference to accelerate electrons in a beam that bombards the sample under examination. These electrons act like a light in an optical microscope, but with much smaller wavelengths and much greater spatial resolution, enabling the ability to visualize sub-micron sized structures.

Electric potential is an important component of gel electrophoresis – a molecular biology technique commonly used for separating large molecules, such as DNA, by size and charge. In this technique, sample material is placed on a slab of agarose gel and an electric potential difference is applied between the ends. In the resulting electric field, the various molecules and molecular fragments move with speeds that depend on charge and molecular weight.

You’ve just watched JoVE’s introduction to electric potential. You should now know how to measure electric potential, and understand how it affects charges and relates to electric potential energy. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Electric Potential. JoVE, Cambridge, MA, (2023).