JoVE 과학 교육
Physics II
This content is Free Access.
JoVE 과학 교육 Physics II
Electric Potential
  • 00:06개요
  • 00:54Principles of Electric Potential
  • 04:01Electric Potential Around a Charged Sphere
  • 05:21Applications
  • 06:28Summary

Potencial Elétrico

English

소셜에 공유하기

개요

Fonte: Yong P. Chen, PhD, Departamento de Física & Astronomia, Faculdade de Ciências, Universidade purdue, West Lafayette, IN

O potencial elétrico, também conhecido como “tensão”, mede a energia potencial elétrica por carga unitária. O campo elétrico é uma quantidade escalar e é fundamental para muitos efeitos elétricos. Como energia potencial, o que é fisicamente significativo é a diferença no potencial elétrico. Por exemplo, a variação espacial no potencial elétrico está relacionada ao campo elétrico, o que dá origem à força elétrica em uma carga. A diferença no potencial elétrico entre dois pontos em um resistor impulsiona o fluxo de corrente elétrica.

Este experimento usará um medidor de volts e um tubo fluorescente para demonstrar o potencial elétrico (mais precisamente, a diferença potencial entre dois pontos no espaço) gerado por uma esfera carregada. O experimento demonstrará o conceito de superfícies equipotenciais, que são perpendiculares aos campos elétricos.

Principles

Uma carga de ponto Q localizada na origem (r = 0) produz um potencial elétrico:

Equation 1(Equação 1)

em qualquer ponto do espaço com uma distância r da carga (na origem r = 0). A equação 1 também descreve o potencial elétrico produzido por uma esfera uniformemente carregada (centrada em r = 0) com carga total Q no espaço fora da esfera(Figura 1). Em ambos os casos, o ponto de referência (onde o potencial é zero) está a uma distância infinita da carga. O potencial elétrico varia ao longo da direção radial, que é a direção do campo elétrico.

Para dois pontos P1 e P2 com distância r1 e r2 longe da origem (centro da carga), respectivamente, a diferença potencial entre esses dois pontos é:

Equation 2(Equação 2)

Se o ponto P2 estiver no infinito (→∞), isso reduz a Equação 2 à Equação 1. Portanto, há uma diferença potencial entre dois pontos se e somente se esses dois pontos tiverem uma distância diferente da origem (centro da carga). Uma superfície esférica centrada na origem é uma “superfície equipotential” neste caso. Observe que, neste caso, o campo elétrico (ao longo da direção radial) é perpendicular à superfície equipotential (esfera). Isso acaba por ser geralmente verdade: a superfície equipotential é perpendicular à direção do campo elétrico.

Figure 1

Figura 1: Diagrama mostrando uma esfera carregada conectada a um gerador elétrico. Um voltímetro é usado para medir o potencial elétrico em um ponto “A” (com distância r do centro da esfera).

Procedure

1. Potencial elétrico devido a uma esfera carregada Obtenha um gerador van der Graff, que pode colocar carga em uma esfera metálica. O centro da esfera é definido como a origem deste experimento. Obtenha um voltímetro. Conecte (usando cabos condutores) seu terminal “−” ao solo ou terminal de referência no gerador van der Graff, ou a um solo elétrico (como um grande tubo de condução) distante (pelo menos vários metros) do gerador. Conecte seu terminal “+” a um cabo voltmeter com uma ponta de sonda de tensão que pode ser movida ao redor. A conexão esquemática é mostrada na Figura 1. Gire a manivela do gerador em pelo menos 10 voltas para carregar a esfera. Com o voltímetro ligado, coloque a ponta da sonda de tensão (conectada ao terminal “+” do voltímetro) a cerca de 0,5 m de distância da origem. Use uma régua para medir ou marcar a distância de antemão, se desejar. Regisso dia a leitura da tensão no voltímetro. Mova a ponta ao redor, mas mantenha a distância longe da origem. Observe a leitura do voltímetro. Repita o passo acima com a ponta da sonda de tensão colocada em cerca de 1 m e 1,5 m, respectivamente. Obtenha um tubo de fluorescência (portátil). Leve o tubo a cerca de 0,5 m de distância do centro da esfera carregada (Figura 2a). Primeiro, oriente o tubo para que ele esteja ao longo da direção radial longe da esfera. Observe o tubo (desligue as luzes para facilitar a observação em relativa escuridão). Em seguida, gire o tubo em 90 graus para que seja perpendicular à direção radial (Figura 2b). Observe o tubo novamente. Figura 2: Diagrama mostrando uma esfera carregada conectada a um gerador elétrico. Um tubo de fluorescência é usado para indicar a diferença potencial entre as duas extremidades do tubo. No caso de ( a) o tubo é orientado ao longo da direção radial; e ( b) o tubo é orientado perpendicular à direção radial.

Results

In steps 1.4-1.5, the voltmeter can be observed to give similar readings if the probe tip is kept at similar distances from the origin (that is, on an equipotential surface). However, the voltage drops if the probe moves farther away from the origin. The voltage reading at 1 m and 1.5 m away will be about 1/2 and 1/3 of the reading at 0.5 m away, respectively. If the voltage V measured versus the inverse distance (1/r) is plotted, a straight line results, as expected from Equation 1.

Applications and Summary

Electric potential (voltage) is ubiquitous and perhaps the most commonly used quantity in electricity. It is often much more convenient to use electric potential (which is a scalar) than electric field (which is a vector), even though the two can be related to each other. Electric potential difference is used to drive and control charge motion (accelerate/decelerate/deflect charges), for example in a TV screen or electron microscope. Electric potential difference (what we usually call voltage) is also what drives current flow in a conductor. Whenever one measures a voltage, one is measuring the electric potential difference between two points (one of which is sometimes a reference point or ground defined to have zero potential).

The author of the experiment acknowledges the assistance of Gary Hudson for material preparation and Chuanhsun Li for demonstrating the steps in the video.

내레이션 대본

Electric potential defines the energy of a charged particle. It gives rise to electric field and electric force, and is the basis of many electrical phenomena.

The term electrical potential is denoted by the Greek symbol Φ. It is a scalar quantity with a sign and magnitude. Any charge creates electric potential in the space around it. It is different from the term Voltage, although both these physical quantities are measured in Volts.

Here, we will first explain what these terms are, discuss the parameters that affect Φ, and then demonstrate the measurement of electric potential around a charged sphere.

As discussed in the Energy and Work video, potential energy of any object of mass m under the influence of gravitational acceleration g is equal to the amount of work needed to move that object by a height h from the ground. Mathematically, it is given by the formula mgh and has the unit of Joules.

Similarly, in the electric field E around a positively charged surface, the electrical potential energy at a specific point relative to a reference point is the amount of work necessary to move a positive test charge +q from the reference to that specific point. The distance between the two points is denoted by the letter d. Analogous to the gravitational potential energy, the electrical potential energy is the product of q, E, and d, and has the units of Joules.

Then, the electric potential or Φ at that point in the field is the electrical potential energy divided by ‘q’, the charge on the test charge. Therefore, the unit for Φ is joules per coulomb, AKA volts.

Now, if we consider another point in the field, it would have a different electric potential; say Φ0. The potential difference or Φdiff between the two points is known as voltage. This is the concept behind a battery, where the positive terminal is at a higher electric potential compared to the negative terminal and the difference between the two potentials is the voltage of the battery.

Coming back to electric potential, recall that it is a scalar quantity with a sign and magnitude. The sign depends on the source charge. Around an isolated positive charge, the potential is positive, whereas around an isolated negative charge it is negative.

The magnitude of the potential depends on the Q of the source charge producing the electric field, the distance d from the source charge, and the configuration.

For example, the electric potential at any given point around a point charge or a uniformly charged positive sphere with charge Q is given by this formula. It is evident that Φ is inversely proportional to the distance from the sphere. And the graph of electric potential magnitude versus distance is approaching zero at infinity.

This dependence on d also indicates that all locations at the same radius from the charged sphere would have the same potential. This means that there are equipotential surfaces of spherical shape around a charged sphere.

Now that we’ve explained the concepts behind electric potential and potential difference, let’s see how to validate these principles experimentally using a charged sphere.

This experiment uses a Van der Graff generator to charge a metal sphere. Connect the negative terminal of a voltmeter to the generator’s reference terminal or ground. Use a cable to connect the positive terminal of the voltmeter to a probe tip.

Turn the crank of the generator at least 10 times to charge the sphere then turn on the voltmeter and place the tip of the voltage probe about one-half meter away from the center of the sphere. Record the voltage reading at this location.

Move the probe tip around the sphere while maintaining a constant radius of one half meter from the center. During this time, observe the voltmeter measurements and note how the reading remains constant, indicating a spherical equipotential surface.

Repeat this procedure with the probe tip at a distance of one meter, and then one and a half meters from the center of the sphere.

The plot of measured potential versus distance displays a curve that decreases inversely with distance, which validates the theoretical relationship between electric potential and distance, for a charged sphere.

Electric potential is one of the most commonly used electrical quantities and is fundamental to the storage and release of electrical energy.

An electron microscope uses a high electric potential difference to accelerate electrons in a beam that bombards the sample under examination. These electrons act like a light in an optical microscope, but with much smaller wavelengths and much greater spatial resolution, enabling the ability to visualize sub-micron sized structures.

Electric potential is an important component of gel electrophoresis – a molecular biology technique commonly used for separating large molecules, such as DNA, by size and charge. In this technique, sample material is placed on a slab of agarose gel and an electric potential difference is applied between the ends. In the resulting electric field, the various molecules and molecular fragments move with speeds that depend on charge and molecular weight.

You’ve just watched JoVE’s introduction to electric potential. You should now know how to measure electric potential, and understand how it affects charges and relates to electric potential energy. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Electric Potential. JoVE, Cambridge, MA, (2023).