Summary

Preparing a Mice Model of Severe Acute Pancreatitis via a Combination of Caerulein and Lipopolysaccharide Intraperitoneal Injection

Published: May 10, 2024
doi:

Summary

Intraperitoneal drug administration is a safe and effective non-invasive approach for inducing pancreatic injury. This study compared five distinct intraperitoneal injection protocols on mice to induce varying degrees of pancreatic injury and established a model of severe pancreatic injury to investigate the pathological changes and treatment strategies for severe acute pancreatitis (SAP).

Abstract

The treatment of severe acute pancreatitis (SAP), with high mortality rates, poses a significant clinical challenge. Investigating the pathological changes associated with SAP using animal models can aid in identifying potential therapeutic targets and exploring novel treatment approaches. Previous studies primarily induced pancreatic injury through retrograde bile duct injection of sodium taviaurocholate, but the impact of surgical damage on the quality of the animal model remains unclear. In this study, we employed various frequencies of intraperitoneal Caerulein injections combined with different doses of LPS to induce pancreatic injury in C57BL/6J mice and compared the extent of injury across five intraperitoneal injection protocols. Regarding inducing acute pancreatitis in mice, an intraperitoneal injection protocol is proposed that results in a mortality rate as high as 80% within 5 days. Specifically, mice received ten daily intraperitoneal injections of Caerulein (50 µg/kg), followed by an injection of LPS (15 mg/kg) one hour after the last Caerulein administration. By adjusting the frequency and dosage of injected medications, one can manipulate the severity of pancreatic injury effectively. This model exhibits strong controllability and has a short replication cycle, making it feasible for completion by a single researcher without requiring expensive equipment. It conveniently and accurately simulates key disease characteristics observed in human SAP while demonstrating a high degree of reproducibility.

Introduction

Severe acute pancreatitis is characterized by rapid onset, rapid progression, and high mortality rates within the digestive system disease domain1. Its high fatality rate has always been a prominent focus of clinical research. Due to unpredictable changes in clinical conditions, heterogeneity of disease manifestations, and limited availability of human specimens, establishing animal models has become increasingly crucial for disease research.

Retrograde injection of sodium taurocholate into the common bile duct is commonly used to create a rat model of SAP2. By simulating pancreaticobiliary obstruction and inducing reflux of bile and pancreatic fluid, this modeling technique exhibits a high success rate in replicating SAP animal models. However, it should be noted that invasive surgery does have an impact on the animal model itself. Furthermore, this method is limited to larger animals, such as rats and dogs, which are primarily used as experimental subjects. Alternative techniques, including duodenal intubation3, direct duodenal puncture4, and direct puncture of the bile duct-pancreatic duct5, are frequently utilized for modeling purposes.

Intraperitoneal injection and dietary modeling methods offer non-invasive advantages that can be applied to animals of any size. The mouse model of SAP induced by feeding choline-deficient-ethionine (CDE)6 presents certain complications, such as poorly controllable hyperglycemia and hypocalcemia, making it unsuitable for evaluating new diagnostic and therapeutic approaches. On the other hand, intraperitoneal injection of Caerulein combined with L-arginine7 represents the most commonly employed method for inducing acute pancreatitis in mice. Specifically, repeated intraperitoneal administration of Caerulein-a cholecystokinin analog-provides a highly suitable approach for investigating various aspects related to this destructive disease, including pathogenesis, inflammation, and regeneration processes. Due to its structural similarity to cholecystokinin (CCK), Caerulein effectively stimulates gallbladder contraction and pancreatic enzyme secretion, leading to an imbalance in enzyme secretion followed by subsequent self-destruction8. Lipopolysaccharide (LPS), being ubiquitous and extensively studied as a pathogen-associated molecular pattern molecule, can be combined with Caerulein via intraperitoneal injection to establish an effective mice model of SAP. This combination rapidly triggers and releases a significant number of inflammatory cytokines, resulting in excessive local and systemic inflammation. Several studies have reported the induction of SAP models in mice through intraperitoneal injection of Caerulein combined with LPS. This may be attributed to the fact that intraperitoneal injection of Caerulein can cause pancreatic edema and hemorrhage in mice, while the addition of LPS can immediately induce pancreatic necrosis and exacerbate systemic inflammatory response, sepsis and even organ failure. Currently, there is variation in the dosage and frequency of intraperitoneal Caerulein injections as well as inconsistency in additional LPS dosage. Achieving consistency in mouse SAP models is challenging9,10,11,12; therefore, it is necessary to establish a standardized protocol for obtaining an ideal model. In this article, we describe a protocol for intraperitoneal injection in mice and investigate the optimal injection frequency and additional dosage of LPS.

Protocol

This protocol was reviewed and approved by the Ethics Committee at The First Affiliated Hospital of Anhui University of Science and Technology (Huainan, China) (Ethics Code: 2023-KY-905-001). The study followed the National Institutes of Health guidelines for the care and use of research rodents in all animal procedures. C57BL/6J adult mice weighing 20-30 g were used for the present study. The mice were housed in an animal laboratory for one week under controlled conditions (approximately 21 °C with a 12 h alternati…

Representative Results

The process of experimental mouse modeling is illustrated in Figure 1. After 12 h of injection completion, an open-field video recorder was used to monitor the movement distance and immobility duration of different experimental groups of mice for 5 cycles (Figure 2A). During the 5 cycles, mice in the PI V group maintained a low level of movement distance within 3 min, while the immobility ratio within 3 min increased with each subsequent cycle (…

Discussion

Currently, there is a lack of effective means to improve the high mortality rate in patients with severe acute pancreatitis. It is crucial to investigate the efficacy of drugs in enhancing immune stability mechanisms. An urgent need exists for an ideal animal model for severe acute pancreatitis. Mice with a C57BL/6J genetic background are widely used in biomedical research, including studies on SAP pathophysiology. Over 70 years of genetic differentiation in B6J mice have resulted in the spontaneous deletion of several e…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was supported by Research Projects in Health and Medical Science in Huainan City (No. HNWJ2023005); Municipal Guiding Science and Technology Plan Program in Huainan City (No.2023151); Anhui Provincial College Students' Innovation and Entrepreneurship Training Program (No. S202310361254); the ninth batch of the "50·Stars of Science and Technology" innovation teams in Huainan City and Anhui Provincial Key Clinical Specialty Construction Project. We would like to express our gratitude to the Laboratory Department of the First Affiliated Hospital of Anhui University of Science and Technology for providing the relevant testing data.

Materials

20× Citric Acid Antigen Repair Solution (pH 6.0) Wuhan servicebio Technology Co.,Ltd, China G1202-250 ml
Amylase Mindray,China
Annexin V-FITC/PI Wuhan servicebio Technology Co.,Ltd, China  G1511   diluted at 1:20
Anti-HMGB1 Rabbit pAB Wuhan servicebio Technology Co.,Ltd, China GB11103   diluted at 1:1800
BCA protein quantitative detection kit Wuhan servicebio Technology Co.,Ltd, China G2026-200T
BD FACSCanto II Flow Cytometer BD Life Sciences, San Jose, CA, 95131, USA BD FACSCanto II
BSA Wuhan servicebio Technology Co.,Ltd, China GC305010-100g
C57BL/6J Cavion Experimental Animal Co., Changzhou, China license number SCXY (Su) 2011–0003
Ceruletide  MCE, New Jersey, USA 17650-98-5  50 µg/kg
Chemiluminescence imager Cytiva CO.,LTD.;USA
Citric acid antigen repair Solution (Dry powder pH 6.0) Wuhan servicebio Technology Co.,Ltd, China G1201-5 L
Collagenase IV Wuhan servicebio Technology Co.,Ltd, China  GC305014 0.5 mg/mL
DAB (SA-HRP) Tunel Cell Apoptosis Detection Kit Wuhan servicebio Technology Co.,Ltd, China G1507-100 T
Dimension EXL with LM Integrated Chemistry System Siemens Healthcare Diagnostics Inc.Brookfield,USA YZB/USA 8311-2014
ECL developer Wuhan servicebio Technology Co.,Ltd, China
Eosin dye (alcohol soluble) Wuhan servicebio Technology Co.,Ltd, China G1001-100 ml
EthoVision XT  Noldus, Netherlands
FITC-labeled goat anti-rabbit IgG Wuhan servicebio Technology Co.,Ltd, China GB22303   diluted at 1:50
Fully automatic blood cell analyzer Zybio Inc. China  Zybio-Z3 CRP
GapDH Wuhan servicebio Technology Co.,Ltd, China GB11103   diluted at 1:1500
Hematoxylin blue return solution Wuhan servicebio Technology Co.,Ltd, China G1040-500 ml
Hematoxylin differentiation solution Wuhan servicebio Technology Co.,Ltd, China G1039-500 ml
Hematoxylin dye Wuhan servicebio Technology Co.,Ltd, China G1004-100 ml
HMGB-1 ELISA kits njjcbio Co., Ltd, China
HOMOGENIZER Wuhan servicebio Technology Co.,Ltd, China KZ-III-F;IC111150 100222
HRP-labeled goat anti-rabbit IgG Wuhan servicebio Technology Co.,Ltd, China GB23303   diluted at 1:1500
IL-6 ELISA kits Wuhan servicebio Technology Co.,Ltd, China GEM0001
Lipase  Mindray,China
Lipopolysaccharide  Wuhan servicebio Technology Co.,Ltd, China GC205009 15 mg/kg
Low temperature high speed centrifuge Changsha Pingfan Apparatus&Instrument Co.,Ltd.,China TGL-20M
Membrane breaking liquid Wuhan servicebio Technology Co.,Ltd, China G1204
microtome Jinhua Craftek Instrument Co., Ltd.;China CR-601ST
Nylon mesh Wuhan servicebio Technology Co.,Ltd, China 200-mesh
One-step TUNEL cell apoptosis detection kit (DAB staining method) Wuhan servicebio Technology Co.,Ltd, China G1507-100T
Paraffin tissue embedding machine PRECISION MEDICAL INSTRUMENTS CO.,LTD;Changzhou,China PBM-A
Pathological tissue drying apparatus PRECISION MEDICAL INSTRUMENTS CO.,LTD;Changzhou,China PHY-III
Phosphate-buffered saline Wuhan servicebio Technology Co.,Ltd, China G4202-100ML
PMSF Wuhan servicebio Technology Co.,Ltd, China G2008-1 ml
Positive fluorescence microscope Olympus Corporation,Tokyo, Japan BX53
Pro Calcitonin Mindray,China
PVDF membrane Millipore, USA 0.22 µm
RIPA Wuhan servicebio Technology Co.,Ltd, China G2002-100 ml
SDS-PAGE Beyotime Biotechnology,China P0012A
TNF-αELISA kits Wuhan servicebio Technology Co.,Ltd, China GEM0004
Ultrasonic water bath DONGGUAN KQAO ULTRASONIC EQUIPMENT CO.,LTD.;China KQ-200KDE
Western Blot Bio-Rad Laboratories, Inc.,USA
Western blot imaging System Global Life Sciences IP Holdco LLC, JAPAN Amersham ImageQuant 800 
Whirlpool mixer SCILOGEX;USA

References

  1. Gliem, N., Ammer-Herrmenau, C., Ellenrieder, V., Neesse, A. Management of severe acute pancreatitis: An update. Digestion. 102 (4), 503-507 (2021).
  2. Duan, F., et al. GDF11 ameliorates severe acute pancreatitis through modulating macrophage M1 and M2 polarization by targeting the TGFbetaR1/SMAD-2 pathway. Int Immunopharmacol. 108, 108777 (2022).
  3. Zhang, X. P., et al. Preparation method of an ideal model of multiple organ injury of rat with severe acute pancreatitis. World J Gastroenterol. 13 (34), 4566-4573 (2007).
  4. Bluth, M. H., Patel, S. A., Dieckgraefe, B. K., Okamoto, H., Zenilman, M. E. Pancreatic regenerating protein (reg I) and reg I receptor mRNA are upregulated in rat pancreas after induction of acute pancreatitis. World J Gastroenterol. 12 (28), 4511-4516 (2006).
  5. Qiu, F., Lu, X. S., Huang, Y. K. Effect of low molecular weight heparin on pancreatic micro-circulation in severe acute pancreatitis in a rodent model. Chin Med J (Engl). 120 (24), 2260-2263 (2007).
  6. Lombardi, B., Estes, L. W., Longnecker, D. S. Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol. 79 (3), 465-480 (1975).
  7. Liu, Y., et al. Deletion of XIAP reduces the severity of acute pancreatitis via regulation of cell death and nuclear factor-kappaB activity. Cell Death Dis. 8 (3), e2685 (2017).
  8. Niederau, C., Ferrell, L. D., Grendell, J. H. Caerulein-induced acute necrotizing pancreatitis in mice: Protective effects of proglumide, benzotript, and secretin. Gastroenterology. 88, 1192-1204 (1985).
  9. Zhou, X., et al. DPP4 inhibitor attenuates severe acute pancreatitis-associated intestinal inflammation via Nrf2 signaling. Oxid Med Cell Longev. 2019, 6181754 (2019).
  10. Yang, J., et al. Heparin protects severe acute pancreatitis by inhibiting HMGB-1 active secretion from macrophages. Polymers (Basel). 14 (12), 2470 (2022).
  11. Kong, L., et al. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury. Cell Death Dis. 12 (10), 928 (2021).
  12. Tan, J. H., et al. ATF6 aggravates acinar cell apoptosis and injury by regulating p53/AIFM2 transcription in severe acute pancreatitis. Theranostics. 10 (18), 8298-8314 (2020).
  13. Schmidt, J., et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 215 (1), 44-56 (1992).
  14. Luo, C., et al. Abdominal paracentesis drainage attenuates severe acute pancreatitis by enhancing cell apoptosis via PI3K/AKT signaling pathway. Apoptosis. 25 (3-4), 290-303 (2020).
  15. Fontaine, D. A., Davis, D. B. Attention to background strain is essential for metabolic research: C57BL/6 and the international knockout mouse consortium. Diabetes. 65 (1), 25-33 (2016).
  16. Wan, J., et al. Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight. 6 (17), e132585 (2021).
  17. Sah, R. P., et al. Cerulein-induced chronic pancreatitis does not require intra-acinar activation of trypsinogen in mice. Gastroenterology. 144 (5), 1076-1085 (2013).
  18. Wang, K., et al. Activation of AMPK ameliorates acute severe pancreatitis by suppressing pancreatic acinar cell necroptosis in obese mice models. Cell Death Discov. 9 (1), 363 (2023).
  19. Jin, C., Li, J. C. Establishment of a severe acute pancreatitis model in mice induced by combined Rain Frog Peptide and lipopolysaccharide and exploration of its mechanism. Acta Exp Bio Sinica. 36 (2), 91-96 (2003).
  20. Tan, J. H., et al. ATF6 aggravates acinar cell apoptosis and injury by regulating p53/AIFM2 transcription in severe acute pancreatitis. Theranostics. 10 (18), 8298-8314 (2020).
  21. Roy, R. V., et al. Pancreatic Ubap2 deletion regulates glucose tolerance, inflammation, and protection from Caerulein-induced pancreatitis. Cancer Lett. 578, 216455 (2023).
  22. Chen, R., Kang, R., Tang, D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 54 (2), 91-102 (2022).
  23. Murao, A., Aziz, M., Wang, H., Brenner, M., Wang, P. Release mechanisms of major DAMPs. Apoptosis. 26 (3-4), 152-162 (2021).
  24. Liu, T., et al. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br J Surg. 104 (9), 1215-1225 (2017).
  25. Li, N., Wang, B. M., Cai, S., Liu, P. L. The role of serum high mobility Group Box 1 and Interleukin-6 levels in acute pancreatitis: A meta-analysis. J Cell Biochem. 119 (1), 616-624 (2018).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Xu, L., Xu, M., Xie, Y., You, W., Wang, J., Xu, L., Feng, Q., Sun, J., Zhang, J., Yang, H., Qi, W. Preparing a Mice Model of Severe Acute Pancreatitis via a Combination of Caerulein and Lipopolysaccharide Intraperitoneal Injection. J. Vis. Exp. (207), e66780, doi:10.3791/66780 (2024).

View Video