

Materials List for

Modeling the Functional Network for Spatial Navigation in the Human Brain

Fengxiang Zhang*¹, Chenghui Zhang*¹, Yi Pu², Xiang-Zhen Kong^{1,3}

Corresponding Author	Citation		
Xiang-Zhen Kong	Zhang, F., Zhang, C., Pu, Y., Kong, X.Z. Modeling the Functional Network for Spatial		
xiangzhen.kong@zju.edu.cn	Navigation in the Human Brain.	Navigation in the Human Brain. J. Vis. Exp. (200), e65150, doi:10.3791/65150 (2023).	
Date Published	DOI	URL	
October 13, 2023	10.3791/65150	jove.com/video/65150	

Materials

Name	Company	Catalog Number	Comments
Brain connectivity toolbox (BCT)	Mikail Rubinov & Olaf Sporns	2019	The Brain Connectivity Toolbox (brain-connectivity-toolbox.net) is a MATLAB toolbox for complexnetwork (graph) analysis of structural and functional brain-connectivity data sets.
GRETNA	Jinhui Wang et al.	2	GRETNA is a graph theoretical network analysis toolbox which allows researchers to perform comprehensive analysis on the topology of brain connectome by integrating the most of network measures studied in current neuroscience field.
MATLAB	MathWorks	2021a	MATLAB is a programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models.
Python	Guido van Rossum et al.	3.8.6	Python is a programming language that lets you work more quickly and integrate your systems more effectively.
Statistical Parametric Mapping (SPM)	Karl Friston et.al	12	Statistical Parametric Mapping refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional imaging data.

¹Department of Psychology and Behavioral Sciences, Zhejiang University ²Department of Neuroscience, Max Planck Institute for Empirical Aesthetics

³Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine

^{*}These authors contributed equally