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Transcranial direct current stimulation (tDCS) is a technique that has been intensively investigated in the past decade as this method offers a
non-invasive and safe alternative to change cortical ex0|tab|||ty The effects of one session of tDCS can last for several minutes, and its effects
depend on polarity of stimulation, such as that cathodal stimulation induces a decrease in cortical excitability, and anodal stimulation induces
an increase in cortical excitability that may last beyond the duration of stimulation®. These effects have been explored in cognltlve neuroscience
and also clinically in a variety of neuropsychiatric disorders — especially when applied over several consecutive sessions®. One area that has
been attracting attention of neuroscientists and clinicians is the use of tDCS for modulation of pain-related neural networks3 Modulation of
two main cortical areas in pain research has been explored: primary motor cortex and dorsolateral prefrontal cortex’. Due to the critical role of
electrode montage, in this article, we show different alternatives for electrode placement for tDCS clinical trials on pain; discussing advantages
and disadvantages of each method of stimulation.

Video Link

The video component of this article can be found at https://www.jove.com/video/2744/

Protocol

1. Materials

1. Check if you have all materials needed (Table 1, Figure 1).

TDCS devices should be battery-driven and function as a constant current stimulator with a maximum output in the miliAmps range. In some
devices, the batteries can be chargeable. Constant voltage (voltage controlled) stimulators are not appropriate for tDCS. Using electrical
outlets to power the device is not convenient or appropriate as mal-functioning devices might deliver large intensities of electrical currents
with no warning.

2. Electrodes used for tDCS generally consist of a metal or conductive-rubber electrodes enclosed in a perforated sponge pocket which is
saturated with an electrolytes (fluid with salt). Another possibility is the use of rubber electrode with conductive gel. Prolonged passage of
direct current current across metallic electrode (where electrons from the stimulator are converted to ions carried through the body ) can
produce undesired electrochemical products such as pH changes. The sponge pocket may act to physically separate, and thus buffer, the
skin from electrochemical changes.

3. For this reason, metal or rubber electrodes should never be placed on the skin during tDCS. Similarly during stimulation user should be
vigilant against sponge dehydration and movement. A further related consideration is the durability and re-usability of tDCS electrodes. Our
experience is that, especially when the polarity of electrodes is rotated, and proper stimulation conditions consistently maintained, rubber and
metal electrodes can be re-used. The choice of electrolyte is discussed further below. From operating experience, it is recommended to use
flat, and not too coarse perforated sponges, as they best absorb the electrolyte conduction solution and provide uniform skin contact®.

4. There is the possibility to apply topical anesthetics. Especially for short-lasting stimulation, when ramping is not possible, it might prevent
somatosensory perception and uncomfortable sensation arising from tDC stimulation. Another reason for using topical application of local
anesthetics is to create best comparability between sham and active tDCS conditions, since no subject would feel if current is flowing or
not and optimal blinding situation would be guaranteed This approach is particular vulnerable when planning to use larger intensities as
blinding might be less effective in this situation”. Though sensation/pain and skin irritation are not always correlated, excessive use of topical
anesthetics might mask serious adverse effects such as burning.
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In this guide we illustrate the most typical tDCS set-up for pain management: using conductive rubber electrodes, pocket type perforated
sponges, both placed on the head, with no topical anesthetic.

2. Measurements

1. Make sure the subject is seated comfortably.

The area of stimulation will be found through the measurement of the scalp. Usually the convention of the EEG 10/20 system is used’. The
site of stimulation depends on your experimental approach.

3. Find localisation of the Vertex (Figure 2):

Measure the distance of nasion to inion and mark halfway using a skin marker.

Nasion — point between the forehead and nose, at the junction of the nasal bones (Figure 3).

Inion — most prominent point of the occipital bone (Figure 3).

Measure the distance between the pre-auricular points and mark halfway. Mark both halfway spots to find the Vertex.

4. 1. To locate the primary motor cortex, or M1, use 20% of the auricular measurement and use this measurement from Cz through auricular
line (to the side of the Vertex) (Figure 4). This spot should correspond to C3/C4 EEG location. This method of localization is enough
given the focality of traditional large electrodes tDCS. For more focal tDCS, other methods of cortical localization might be needed.

2. To locate the dorsolateral prefrontal cortex (DLPFC)9'1°: One practical method is to measure five centimetres forward from the M1
location or to use the 10/20 EEG system. This should correspond to the F3 or F4 EEG location, as seen here (Figure 5). This method
of determining the stimulation site is sufficient when using traditional tDCS electrodes. For more focal tDCS, other methods of cortical
localization may be needed, such as neuronavigation.

3. Skin Preparation

1. Inspect the skin for any pre-exiting irritation, cuts, or lesions - avoid stimulating over damaged skin and over skull lesions.
To increase conductance, move hair away from the site of stimulation and clean the surface of the skin to remove any signs of lotion, dirt, etc.
and allow it to dry. For subjects with thick hair, use of conductive gel may be necessary.

3. If using re-usable electrodes, inspect the rubber insets and sponges for wear. Inspect the rubber insets and sponges for wear. If there is any
evidence of deterioration, throw out the dirty components and use a new electrode.

4. Position electrodes

1. After finding the site of stimulation and skin preparation you should place one of the elastic or rubber head straps around the head
circumference. The elastic head strap should be placed under the inion as to avoid movement during stimulation. The elastic straps should be
made of non-conducting material (or they will function as electrodes) and non-absorbent material (to avoid the straps absorbing fluid from the
sponges).

2. Each side of the sponges should be soaked with saline solution. For a 35 cm? sponge, approximately 6 mL of solution per side may suffice
(total of 12 mL per sponge). Be careful not to over soak the sponge (not excessively wet- there should be no water leaking; but also not dry
as to have a good electrode contact). Avoid fluid leaking across the subject. You can use a syringe to add more solution if needed.

There is evidence that electrolyte solutions with lower NaCl concentrations(15 mM) are perceived as more comfortable during tDCS than
those solutions with higher NaCl concentrations (220 mM)11'12. Since the ionic strength of deionised water is much less than that of all

NaCl solutions, there is a significantly larger voltage required to carry current across the electrode and through the skin compared to NaCl
solutions. Thus, it is recommended the use of solutions with moderate NaCl concentration, in the range 15 mM to 140 mM, as tDCS at
these concentrations is more likely to be perceived as comfortable, requires moderately lower voltage while still allowing good conduction of
current. The use of gels (adapted from applications such as EEG) has also been considered — a main limitation is the increased hassle of
set-up clean-up following stimulation, without proven benefit regarding outcome when using perforated sponge electrodes.

3. Connect the cables to the device.

Consult with your stimulator operating manual on if the stimulator should be powered on before or after connecting positioned electrodes to
the stimulator. Using all stimulators, the electrodes should not be disconnected or connected when current flow has been initiated. Ensure
the connection polarity is correct as the effects of tDCS are highly polarity specific (typically, red indicates the Anode electrode, and black or
blue indicates the Cathode electrode; this is the convention- but check with your device). Note that in the context of tDCS (and more broadly
electrical stimulation in general), "Anode" always indicated the relative positive terminal where positive current flows intro the body, while
"Cathode" indicates the relative negative terminal where the positive current then exits the body.

4. Insert the connector cord pin securely into the opening of the receptacle on the conductive rubber inset.

5. Slide the conductive rubber inset into the sponge. The insulated portion of cable will protrude from the sponge-pocket opening. Ensure the
entire conductive rubber inset is covered by the sponge and that there is no part of the connector cord pin is visible.

6. Place one sponge electrode below the elastic head strap. Ensure that excessive fluid is not ejected from the sponge unto the scalp during this
process as this will spread current flow across the scalp and deplete the sponge of fluid.

7. Connect the second elastic head strap to the first elastic head strap according to the electrode montage you want to use (Table 2). Other
elastic head straps can be used.

8. Place the second sponge electrode on the head under the second elastic head strap. Make sure you place it onto the marked area you want
to stimulate.

9. The path from one device terminal, through one electrode, across the body, through the second electrode, and back to the second device
terminal forms a circuit — the total resistance of which (sum of the electrodes and body resistance) can be measured. If the overall resistance
is abnormally high, this may indicate improper electrode set-up. If your device measure resistance - this would be recommended — the
indication field should display appropriate electrode contact. Ideally, one should aim to have the impedance under 5k Ohms. Some devices
indicate the voltage across the path rather than resistance - in this case resistance can be calculated simply using ohms law (Resistance
= Indicate Voltage / Current applied). Many devices continue to provide an indication of resistance during the course of stimulation, which
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provides a useful way to detect a potentially hazardous situation (such as a drying electrode). In some cases, device will automatically
terminate stimulation or reduce stimulation intensity if resistance increases beyond a certain threshold.

5. Start tDCS

1. Prior to start the procedure, screen subjects for any contraindications (see discussion).

The subject should be relaxed, comfortable and awake during the procedure. Uncontrolled interference with current cortical activity during
tDCS should be avoided. For stimulation to the motor cortex area, it has been demonstrated that intensive cognitive effort unrelated to the
target area, as well as massive activation of the motor cortex by prolonged muscle contraction abolishes the effects of tpcs'™

3. Adjust the settings on the tDCS stimulator that you want to stimulate with, including the intensity, time, and if applicable to your device, the
sham condition setting (Figure 10). Note that some stimulators have to be switched on before the contact between the electrodes and the
skin is made to avoid electrical shocks.

4. Now initiate the tDCS. To reduce any adverse effects start current flow by ramping up the current. Many commercial devices include features
to automatically ramp current on and off. One point that should be noted is that subjects usually continue feeling some local sensation even
after current is discontinued.

5. Some subjects may experience discomfort during the initial tDCS period. In such cases the current may be moderately decreased for a
temporary period, for example by 50%, as the subject adjusts, then gradually increased back up to the desired level. This feature may
depend on the device being used.

6. Atthe beginning of stimulation, the majority of subjects will perceive a slight itching sensation, which then fades in most cases. Similarly, rapid
changes of the stimulating circuit immediately might induce peripheral nerve firing. The subject can notice it as brief retinal phosphenes with
electrodes near the eyes. These effects can be largely avoided by ramping the current up and down at the beginning and end of treatment.
This might also prevent the dizziness or vertigo occasionally reported when current is suddenly increased or decreased.”

7. After the stimulation, current flow should be ramped off as well. Note on High-Definition tDCS (HD-tDCS): TDCS with electrodes smaller
then approxrmately 2 cm? is called HD-tDCS and often uses array of electrode (more than two) to guide current through the brain for specific
applrcatlons . This methods paper focused only on conventional tDCS (using larger sponge electrodes), and it is important to emphasize
that HD-tDCS requlres specific electrodes'® , skin preparation, and stimulator hardware. It is not recommended to apply tDCS using 1-2 mA of
sponge electrodes 1418

6. After the procedure

1. To evaluate transcranial DC stimulation regularly and to record the safety of this technique over a long period of time, it is recommended to
use a questionnaire of adverse effects.

2. Such a questionnaire should include any possible adverse effects associated with tDCS. The most common adverse effects are tingling,
itching and burning sensations, headache and discomfort. You can find an example for such a questionnaire in the article of Brunoni et al.
(201 1)16 It is also recommended to collect quantitative on the adverse effects like a 1 to 5 or 1 to10 grade scale.

3. One should also use this adverse effect questionnaire after the condition of sham stimulation to reveal a better comparability between the
two stimulation situations. There is evidence that sham stimulation causes a comparable amount of itching and tingling sensations as active
stimulation.

7. Representative Results:

With proper setup, the tDCS device should display that either current is flowing during active tDCS situation, or the device should display sham
mode when running a sham stimulation procedure (Figure 10).

Of note, even with the device indicating that current is flowing through the system, current might actually being shunted through the skin. In order
to avoid this effect, it is recommended to have sufficient distance between electrodes. According to modeling studies we recommend that to be of
at least 8cm when using 5x7cm electrodes "’

Furthermore, it is recommended to consult computer head models' and neurophysiological studies. These additional steps would ensure that a
specific montage is associated with significant changes in cortical excitability in the area that is being investigated.

Representative for anodal stimulation is an increase of brain excitability, whereas cathodal stimulation leads to a reduction of the cortical
excitability. Robust evidence for this has been revealed in trials targeting the primary motor cortex (Figure 6).

The variation of the electrode size leads to a variation of focal effects. With a decrease of the diameter of the electrode, a more focal stimulation
can be achieved. This can be proven by using TMS over the motor cortex. On the other hand by increasing electrode size it is possible to have a
functionally ineffective electrode (Figure 8).

With session duration of 20 minutes or more and with multiple sessions over consecutive days, the after-effects of tDCS will last longer. Example
for this is the treatment of pain syndromes.

One important point is the location of the reference electrode. If an extracephalic position is chosen, investigator should be aware of current
distribution as the reference electrode might displace the peak of induced current and modify the effects of tDCS.
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Figure 2: Vertex Position. Cortical areas marked according to the 10/20 system.
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Figure 3: Nasion and Inion Position
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Figure 4: Motor cortex Position. Cortical areas marked according to the 10/20 system.
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Figure 5: DLPFC Position. DLPFC= dorsolateral prefrontal cortex. Cortical areas marked according to the 10/20 system.
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Figure 6: Change in cortical excitability due to current polarity and tDCS montage. Table: Induced effects of tDC stimulation on the size of the
motor evoked potential (MEP), assessed by transcranial magnetic stimulation (TMS). MEP amplitudes after stimulation are given in percent of
MEP without stimulation. Note that only the motor cortex (M1) - contralateral supra-orbital (Fp2) montage setting leads to a significant increase
of MEP size after anodal and a decrease of MEP amplitude after cathodal stimulation. There are no significant effects on MEP amplitude in other
tDCS montages. Figure: Electrode Placements® (modified from Nitsche 2000).

Copyright © 2011 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported May 2011 | 51 | e2744 | Page 6 of 11
License


https://www.jove.com
https://www.jove.com
https://www.jove.com

L]
lee Journal of Visualized Experiments www.jove.com

High-definition-tDCS
(=12mm diameter)

40
35 3,5

S5cmx5cm
= 25 cm?
S5cmx7cm
= 35 cm?
Bcmx 8em
= 64 cm?
10cm x 10cm
= 100 em?
Figure 7: Electrode Sizes
=
°
K
1
E
®
2 140
8
E 120
a
g 160/ [ ADM - Anodal
8 [ ADM - Cathodal
3 1 FDI - Anodal
E 30'
= [1FDI - Cathodal
o
% 60 R
=
E
8
o
o
-

Electrode Size in cm2

Figure 8: Decreasing the size of the electrode leads to a more focally effect of tDCS. Muscle-evoked potential (MEP) amplitude sizes of the
abductor digiti minimi (ADM) and of the first dorsal interosseus muscle (FDI) during anodal or cathodal tDCS. Using the condition of a 35 cm
electrode, anodal and cathodal tDCS influence the MEP amplitude size of the ADM and the FDI to a similar extent. At this montage, both hand
muscle representation areas are located underneath the stimulating electrode. In the case of a smaller electrode, which is only placed over the
representational area of the ADM, the effects of MEP amplitude changes of the cortical FDI representation are not reproducible (see yellow
column)'® (modified from Nitsche 2007).
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Figure 9: Tissue-depended current density. Current densities calculated in different tissues. M?gnitude of current density is dependent on the

conductivity of tissue. Note that approximately 10% of current density reaches the Gray Matter
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(modified from Wagner 2007a).

Figure 10: Different stimulation conditions: active vs. sham. Some tDCS devices provide set ups for active and sham condition. Usually
applicable stimulation is indicated with a light signal.

Material

TDCS device

9V Battery (2x)

Two rubber head bands

Two conductive rubber electrodes

Two sponge electrodes

Cables

NaCl solution

Measurement Tape

Table 1. Materials

Anode Electrode Positioning

Cathode Electrode Positioning

Observations

Caveats

Primary Motor cortex (M1)

Supra-Orbital

This is the most used montage. It
has been proven that the cortical
excitability can be changed

up to 40%°® (Figure 6). Anodal
stimulation results in neuronal
depolarisation and increasing
neuronal excitability while cathodal

stimulation has opposite results®.

Only one motor cortex is stimulated
— might be a problem for bilateral
pain syndromes. Also the
confounding effect of the supra-
orbital electrode needs to be
considered.

Primary Motor cortex (M1)

Primary Motor cortex

- Interesting approach when there
is a bi-hemispheric imbalance
between motor cortices (such as in
stroke)

- Can be used with two anodal
stimulation electrodes (see sixth
row), where cathodal electrode is
placed in the supraorbital area for
instance.

Electrodes might be too close to
each other- issue of shunting.

A decrease of the area of the
electrodes will increase the degree

of shunting along the skin 1
Therefore shunting might be
related not only to electrode
positioning but also to electrode
size.

The relative resistance of the
tissues is dependent upon the
electrode position and size- the
overall resistance on which the
current flows is dependent upon

the electrode propertiesw.

Dorsolateral Prefrontal Cortex
(DLPFC)

Supra-Orbital

Most used for DLPFC stimulation
— positive results for treatment

. 2 .
of depression 0 and also chronic

pain3.

Only unilateral DLPFC stimulation
situation is possible with this
montage.

Dorsolateral Prefrontal Cortex

Dorsolateral Prefrontal Cortex

- Interesting approach when there
is a bi-hemispheric imbalance.
- Can be used for a two anodal
stimulation situation (see sixth
row), where cathodal electrode is

Electrodes might be too close to

each other- issue of shunting 9
(Please see second row, fourth
column).

Copyright © 2011 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

License

May 2011 | 51 | e2744 | Page 8 of 11


https://www.jove.com
https://www.jove.com
https://www.jove.com

[ ]
lee Journal of Visualized Experiments

www.jove.com

placed in the supraorbital area for
instance.

Occipital

Vertex

Interesting active control for
chronic pain trials or for modulation
of visual cortex.

When used as active control,
reference electrodes are placed
in different locations- problem of
comparability between intra- and
inter- experimental approaches.

Two anodal electrodes, e.g. both
Motor cortices

Supra-Orbital

Simultaneous change in cortical
excitability

Transcallosal inhibition might add a
confounding factor®'

One electrode over a cortical
target, e.g. Primary Motor cortex
(M1)

Extra-Cranial

Avoid the confounding effect of two
electrodes with opposite polarities

in the brain’.

Depending on intended target,
current distribution might not be
optimal and therefore induce

ineffective stimulation?

Table 2. Electrode Positioning7

Note: It is possible that the differences between various electrode positions might be the activation of different neuronal populations due to
different electrical field orientations.

Critical Steps:
Aspects to be checked prior to starting procedure:

» First of all, patients should be screened for whether there are any contraindications for tDCS - these contraindications may be application
specific. This includes questions such as presence of severe or frequent headache, chronic skin disorder, or adverse reactions to a previous
tDCS treatment. If he or she has any metal in the head or had a serious brain injury, the anatomical changes may modify current flow?®24
History of seizure, pregnancy and history of a stroke are usually not strict contraindications - and indeed, might be inclusion criteria in some
clinical trials.

» Check for any lesions on the scalp- additionally subjects should be specifically interviewed and inspected for the existence of skin diseases.
If there are any lesions, tDCS procedure should be avoided or, if appropriate, ensured that stimulation will not be conducted directly over or
across the lesion. Stimulation of a different site can be considered. It is reported that repeated daily tDCS causes clinically significant skin
irritation under the electrodes in some patients7 There is evidence of tDCS induced lesions according to skin integrity. For instance, it has
been shown extensive redness and brown crusty intracutaneous changes with irregular round shapes due to tDC stimulation at an intensity
of 2 mA for a period of 2 weeks including five sessions each week®. IFtDCS is strongly indicated or has to be conducted, it is possible to
take into consideration to stimulate with a lower intensity such as 0.5- 1.0 mA, but it is not guaranteed that this will prevent skin irritations or
lesions. Thus, the condition of the skin under the electrodes should be inspected before and after tDcs’.

» Check connectors of cables for electrolysis. Use another pair if evident. It is recommended to check the cables after approximately two
months of use.

During both- active or sham- tDCS always ask whether subject still feels comfortable and is able to continue procedure.
Possible modifications:

* There are many varieties of electrode posmonmg (Table 2).

* There are many varieties of electrode sizes? (anure 7). For a given applied current, electrode size influences the current densrty 8 and
influences the focallty of brain modulation (Figure 8). Clinical studies have suggest the smaller the size of the electrode the larger the
current densrty however modelling studies suggest that the relationship between electrode size and area of brain modulation may be more
complex Furthermore the effects of small electrodes can differ qualitatively due to differential shunting of current in the scalp, and greater
edge effect relative to the overaII electrode area’. There were drastically superior levels of shunting for small electrode sizes reported than for
the larger electrode schemes'®

* High-Definition tDCS (HD- tDCS) is a technology that improves spatial focality but requires special hardware and procedural controls'®

* The electrode montage (electrode position and size) along with the applied current determine the generated electrical field strength in the
brain which, in turn, determines the efficacy of tDCS. The use of just electrode current density, defined by the ratio between the current
strength and the electrode size, has been proposed to normalize clinical outcomes — but modelling studies suggest this may only apply over
a limited range and that overall electrode montage design determines outcome. Generally, increasing current intensity (or current density) for
any glven montage result in stronger effects. It is important to note that the current density at the skin surface is much higher than that in the
brain' (F|gure 9).

* The position of the "return” ("reference") electrode may influence the overall current flow pattern through the brain, and thus even influence
brain modulation under the active electrodes®. Thus the potion of both electrodes should be considered.

» The duration of the stimulation depends on the aim of the experimental approach. An increase of duration of the stimulation is associated with
the occurrence and a longer duration of after-effects®*. However at least one study reported a reversal of effects directions when stimulation
duration was increased, suggesting that more intensity does not necessarily translate into a more robust clinical outcome. Though tDCS
within published parameters is considered safe and well tolerated, the potential for undesired side-effects increases with increasing intensity
(time, duration, or repetition rate/number).

» Orientation of the electric field: defined by the electrodes positions and polarlty Cathodal stimulation typically decreases cortical excitability,
whereas anodal stimulation typically increases the cortical excrtabrlrty
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* Placebo: For sham-tDCS the same protocol above is used. However, the current will be applied for 30 seconds. This is one of the advantages
of tDCS compared to other non-invasive brain stimulation methods. Since the arising sensations resulted from active-tDCS tend to occur only
at early stages of application, this sham method makes it dlfflcult for the patient to distinguish the placebo from active tDCS application. This
initial and brief stimulation is a reliable method of placebo

* Note that the technique can also be applied when using other transcranial electric therapies such as tACS® or tRNS™.

Rationale for using tDCS in chronic pain:

The fact that multiple therapeutic pharmacological modalities provide only modest relief for chronic pain patients raises the possibility that the
cause for the persistence of this debilitating disorder may lie within plastic changes in pain related neural networks. Interestingly, modulation of
cortical activity can be achieved non-invasively by tDCS, as described earlier, which has been reported to produce lasting therapeutic effects in
chronic pain due to changes in cortical plasticity.

Clinical effect of tDCS in chronic pain:

It has been shown that tDCS applied to the motor cortex changes the local cortical excitability (Flgure 6) More precisely, anodal stimulation
results in an increase of neuronal excitability, whereas cathodal stimulation has opposite results®. Indeed, anodal tDCS application over M1 leads
to a greater improvement in visual analogue scale (VAS) pain ratings than sham tDCS. This therapeutic effect on pain following M1 stimulation,
although tran3|ent was reproduced in several groups of patients with neuropathic pain syndromes like trigeminal neuralgia, poststroke pain
syndrome back pain and fi fbromyalgla Interestingly, clinical trials in neuropathic pain, due to spinal cord injury, stimulation of the motor cortex
by tDCS showed pain improvement and cumulatlve analgesic effect that lasted two weeks after the stimulation. There is also evidence of its
analgesic effect in fibromyalgia patlents 3 that is still S|gn|f|cant after three weeks of follow-up for anodal tDCS of the M1 compared with sham
stimulation, and as well as stimulation of the DLPFC* . Although the effects of anodal tDCS over DLFPC for pain improvement have not been
explored extensively, it was shown it can be used to modulate pain thresholds in healthy subjects Nevertheless, stlmulatlon of this brain area
is a reliable technique for enhancing worklng memory 10 , increasing performance on memory tasks in Alzheimer disease® and reducing cue-
provoked smoking craving S|gn|f|cantly S for instance; therefore it is also conceivable that this might be a useful strategy to modulate affective-
emotional cognitive networks associated with pain processing in patients with chronic pain.

The City University of New York holds patents on brain stimulation, on which Marom Bikson is an inventor. Marom Bikson is a co-founder of
Soterix Medical Inc.
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