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Abstract

Both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-

mass spectrometry (LC-MS) are widely used metabolomics approaches to detect and

quantify hundreds of thousands of metabolite features. However, the application of

these techniques to a large number of samples is subject to more complex interactions,

particularly for genome-wide association studies (GWAS). This protocol describes

an optimized metabolic workflow, which combines an efficient and fast sample

preparation with the analysis of a large number of samples for legume crop species.

This slightly modified extraction method was initially developed for the analysis of plant

and animal tissues and is based on extraction in methyl tert-butyl ether: methanol

solvent to allow the capture of polar and lipid metabolites. In addition, we provide a

step-by-step guide for reducing analytical variations, which are essential for the high-

throughput evaluation of metabolic variance in GWAS.

Introduction

Large-scale "omics" approaches have enabled the analysis of

complex biological systems1,2 ,3  and further understanding

of the link between genotypes and the resulting

phenotypes4 . Metabolomics using ultra-high-performance

liquid chromatography-mass spectrometry (UHPLC-MS) and

GC-MS enabled the detection of a plethora of metabolite

features, of which only some are annotated to a certain

degree, resulting in a high proportion of unknown metabolites.

Complex interactions can be explored by combining large-

scale metabolomics with the underlying genotypic variation

of a diverse population5 . However, handling large sample

sets is inherently associated with analytical variations,

distorting the evaluation of metabolic variance for further

downstream processes. Specifically, major issues leading to

analytical variations are based on machine performance and

instrumental drift over time6 . The integration of batch-to-batch

https://www.jove.com
https://www.jove.com/
https://www.jove.com/author/Mustafa_Bulut
https://www.jove.com/author/Alisdair%20R._Fernie
https://www.jove.com/author/Saleh_Alseekh
http://dx.doi.org/10.3791/62732
https://www.jove.com/video/62732


Copyright © 2021  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com July 2021 • 173 •  e62732 • Page 2 of 19

variation is challenging and especially problematic when

analyzing large-scale structured plant populations. Multiple

normalization procedures were suggested to correct for non-

biological variations, e.g., the usage of internal, external, and

isotope-labeled internal standards to correct for analytical

errors, of which each is inherently associated with known

problems and pitfalls7,8 ,9 ,10 .

In addition to analytical variation, the choice of extraction

protocols generally varies depending on the analytical

method. Ultimately, it is desired to reduce material and

labor costs as well as the necessity of using several

aliquots of the same sample for various analytical processes

by performing phase separation-based extraction methods.

These methods were first introduced using chloroform:

methanol/water solvents to fractionate polar and hydrophobic

compounds11 .

This protocol describes a fast high-throughput pipeline for

a multi-omics platform to profile both polar metabolites and

lipids in legume species. Further, it shows how those datasets

can be appropriately corrected for analytical variation and

normalized before integrating genotypic information to detect

metabolite quantitative trait loci (QTL) by performing GWAS.

Protocol

1. Experimental design and plant cultivation

NOTE: Set up the experiment depending on the experimental

hypothesis, e.g., using a large-scale GWAS population

decreases the necessity of multiple replicates, as statistical

testing will be performed based on the haplotypes of all

the individual SNPs instead of the accession. In contrast,

multiple replicates are indispensable in other experimental

approaches. The following points must be considered while

preparing the experiment.

1. Include enough biological replicates, depending on the

experimental hypothesis.

2. Randomize the biological replicates block-wise to

reduce local environmental bias during cultivation, e.g.,

greenhouse, field.

3. Ensure proper maintenance of the plant during growth.

Treat plants homogeneously to reduce bias.

2. Preparation of biological plant material

1. Harvest preparation

1. Label harvesting tubes (20 mL) containing two

5 mm and two 8 mm diameter metal beads for

homogenizing. Fill up a dewar with liquid nitrogen.
 

NOTE: Plants should be in the vegetative stage for

fresh leaf and root tissue harvesting.

2. Harvest biological samples by flash-freezing in liquid

nitrogen. Harvest as quickly as possible to exclude

the influence of circadian oscillation on metabolism

during prolonged harvesting durations12,13 . Store the

harvested fresh leaf and root tissues for further

processing at -80 °C.
 

NOTE: Leaf-cutting to flash-freezing should not take

longer than a few seconds as after leaf cleavage, active

biological processes would alter metabolic profiles due

to wounding. For roots, preclean the roots by washing

with water before flash-freezing in liquid nitrogen. Excess

water on the root surface should be soaked up with paper

tissue. Dried seeds can be stored at room temperature;

no freezing in liquid nitrogen is required.

3. Grind the tissue using a tissue mixer mill.
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1. Precool the tube holders in liquid nitrogen for a

couple of minutes to maintain a low temperature

while grinding the tissue.

2. Transport the biological samples in a nitrogen-

containing dewar after taking them out from the -80

°C freezer.

3. Grind the tissues to obtain homogeneous powder;

use 25 Hz for 1 min and repeat after freezing in liquid

nitrogen if the tissue is not homogeneously ground.

4. For grinding dried seeds, place the seeds in a grinding

jar with a 15 mm diameter metal bead. Use the same

frequency and time as mentioned in 2.3.3.
 

NOTE: Clean and precooled mortars and pestles can be

used if a tissue mixer mill is unavailable.

5. Precool labeled 2 mL safe-lock microcentrifuge tubes.

Weigh 50 mg with an error of ±5 mg of fresh plant material

by using an analytical scale. Precool the tools used for

transferring plant material in liquid nitrogen. Ensure that

plant material stays frozen during the weighing process.
 

NOTE: Do not expose fresh plant material too long to

room temperature as biological processes are activated

by increasing temperature, altering metabolic profiles14 .

6. Generate additional quality control (QC) samples by

pooling a proportion of each sample and weighing 50 mg

with an error of ±5 mg of pooled fresh plant material into

precooled 2 mL safe-lock microcentrifuge tubes.
 

NOTE: At least three QC samples are advised for every

60 samples. The QC samples are essential for the

downstream correction, normalization, and analyses.

3. Extraction reagents

1. Fresh tissue, e.g., leaves and roots
 

NOTE: Sample extraction is based on a previously

described protocol15 . This protocol has been modified

based on present needs, e.g., multiple tissues, different

internal standards, and large-scale experiments.

Additionally, all volumes and instrument settings

mentioned below are adjusted to in-house analytical

units. Protocol users should adjust these according to

their analytical unit and biological samples, based on test

samples.

1. Extraction mixture 1 (EM1): methyl tert-butyl ether

(MTBE)/methanol (MeOH) (3:1 v/v)

1. Prepare a mixture of MTBE/MeOH in a 3:1 ratio.

For 100 mL of extraction solvent, mix 75 mL of

MTBE with 25 mL of MeOH in a clean glass

bottle.
 

NOTE: Solvents should be handled carefully in

the fume hood with proper safety equipment.

2. Add 45 µL of 1,2-diheptadecanoyl-sn-glycero-3-

phosphocholine (1 mg/mL in chloroform) as an

internal standard for the UHPLC-MS based lipid

analysis, 400 µL of ribitol (1 mg/mL in water)

as internal standard for the GC-MS based

analysis, and 125 µL of isovitexin (1 mg/mL

in MeOH/water (1:1 v/v)) for UHPLC-MS-based

metabolite analysis.
 

NOTE: The addition of internal standards is

necessary for the post-analysis normalization

according to analytical needs. As 1 mL of

EM1 is needed for each sample, prepare a

stock solution according to the experimental

sample size, which should be used for the

entire experiment. EM1 must be stored at

-20 °C. Check for the absence of the used

internal standard and overlapping with other
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compounds in the investigated species. Several

standards can be used; the selection of the

internal standards in this protocol was based on

previous tests using common bean extracts16 .

2. Extraction mixture 2 (EM2) water/ methanol (MeOH)

(3:1 v/v)

1. For 100 mL EM2, add 75 mL of double-distilled

water and 25 mL of MeOH in a clean glass

bottle.

2. Add 500 µL of EM2 per sample, and prepare

a stock solution according to the experimental

sample size, which should be used for the entire

experiment. Store EM2 at 4 °C.

2. Dried seeds

1. Extraction mixture 3 (EM3) methanol (MeOH)/ water

(7:3 v/v)

1. For 100 mL of EM3, add 70 mL of MeOH and

30 mL of double-distilled water in a clean glass

bottle. Prepare 1 mL of EM3 for each sample.

2. Add 400 µL of ribitol (1 mg/mL in water)

as internal standards for the GC-MS-based

analysis and 125 µL of Isovitexin (1 mg/mL in

MeOH/water (1:1 v/v)) for UHPLC-MS-based

metabolite analysis.
 

NOTE: Prepare a stock solution according to

the experimental sample size and use it for the

entire experiment. Store EM3 at 4 °C.

4. Sample extraction

1. Fresh tissue, e.g., leaves and roots

1. Prepare three 1.5 mL safe-lock microcentrifuge

tubes for each sample. Keep EM1 in a -20 °C liquid

cooling system. Transfer the fresh samples from

the -80 °C freezer to dry ice or liquid nitrogen for

transportation. Add 1 mL of precooled EM1 to each

50 mg aliquot and vortex briefly before keeping on

ice.

2. Incubate the samples on an orbital shaker at 800 ×

g for 10 min at 4 °C.

3. Sonicate the samples in an ice-cooled sonication

bath for 10 min.

4. Add 500 µL of EM2 using a multichannel pipette to

avoid variation in added volumes.

5. Vortex the samples briefly to mix the extraction

mixtures before centrifuging at 11,200 × g for 5 min

at 4 °C.

6. After phase separation occurs, transfer 500 µL of the

upper lipid-containing phase to a prelabeled 1.5 mL

safe-lock microcentrifuge tube. Remove the rest of

the upper phase.
 

NOTE: Take care while transferring as this upper

phase has a high vapor pressure and tends to leak

out from the pipette.

7. Transfer 150 µL and 300 µL of the lower polar and

semi-polar metabolite-containing phases in two 1.5

mL safe-lock microcentrifuge tubes used for GC-MS

and UHPLC-MS analysis, respectively.

8. Concentrate all the extracted fractions by letting the

solvents evaporate without heating using a vacuum

concentrator and store at -80 °C.

2. Dried seeds

1. Prepare two 1.5 mL safe-lock microcentrifuge tubes

for each sample. Keep EM3 on ice. Place a 5 mm

diameter metal bead in the sample aliquots.

https://www.jove.com
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2. Add 1 mL of EM3 in each 50 mg aliquot and

homogenize the samples at 25 Hz for 2-3 min before

putting them on ice.

3. Sonicate the samples in an ice-cooled sonication

bath for 10 min.

4. Vortex the samples briefly before centrifuging at

11,200 × g for 5 min at 4 °C.

5. Transfer 150 µL and 300 µL of the supernatant in

two 1.5 mL safe-lock microcentrifuge tubes used for

GC-MS and UHPLC-MS analysis, respectively.

6. Concentrate all extracted fractions by letting the

solvents evaporate without heating using a vacuum

concentrator and store at -80 °C.
 

NOTE: Based on experience, users are advised

to perform step 4.2 for semi-polar metabolites

and derivatized metabolite analysis in dried seeds.

Perform extraction step 4.1 for dried seed lipid

analysis.

5. Analysis of lipids using UHPLC-MS

1. Re-suspend the dried lipid fractions in 250 µL of

acetonitrile:2-propanol (7:3, vol/vol).

2. Sonicate the lipid phase for 5 min, centrifuge at 11,200

× g for 1 min.

3. Transfer 90 µL of the supernatant to a glass vial for LC-

MS.

4. Inject 2 µL of the extracts into the LC-MS.

5. Perform lipid fractionation on a reversed-phase

C8 column held at 60 °C running with a flow of 400 µL/

min with gradual changes of eluent A and B as shown in

Table 1. Acquire the mass spectra in positive ionization

mode with a mass range of 150-1,500 m/z.

6. Include several QC samples in all daily batches and

a blank to ensure correction for analytical variation.

Randomize samples block-wise in sequential order.

6. Analysis of polar and semi-polar metabolites
using UHPLC-MS

1. Re-suspend the dried polar phase in 180 µL of UHPLC-

grade methanol: water (1:1 v/v).

2. Sonicate the polar phase for 2 min, centrifuge at 11,200

× g for 1 min.

3. Transfer 90 µL of the supernatant to a glass vial for LC-

MS.

4. Inject 3 µL of the extracts into the LC-MS.

5. Perform metabolite fractionation on a reverse phase

C18 column held at 40 °C running with a flow of 400

µL/min with gradual changes of eluent A and B as

shown in Table 1. Acquire the mass spectra in a mass

range of 100-1,500 m/z in a full MS scan and all ion

fragmentation (AIF) induced by high-energy collisional

dissociation (HCD) of 40 keV.
 

NOTE: Use both ionization modes. However, due to

limited capacity while running large numbers of samples,

run test samples in both ionization modes to determine

the preferred ionization mode.

6. Include several QC samples in all daily batches and

a blank to ensure correction for analytical variation.

Randomize samples block-wise in sequential order.

7. Run a pooled QC in data-dependent MS2  in both

negative and positive ionization modes. Use the obtained

mass spectra in a later step (8.5) for annotation.
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7. Analysis of derivatized Metabolites using GC-
MS 17,18

NOTE: The analysis of derivatized metabolites is based on

a previously described protocol17 . Handle all derivatization

reagents in the fume hood. Ensure that N-methyl-N-

(trimethylsilyl)trifluoracetamide (MSTFA) does not get in

contact with water and humidity.

1. Derivatization reagent 1 (DR1)

1. Dissolve methoxyamine hydrochloride in pyridine to

obtain a concentration of 30 mg/mL of DR1. Use 60

µL of DR1 for each sample. Prepare a stock solution

according to the sample size, and store at room

temperature.

2. Derivatization reagent 2 (DR2)

1. Dissolve MSTFA with 20 µL of fatty acid methyl

esters (FAMEs) per 1 mL of MSTFA. Use 70 µL

of DR2 for each sample. Prepare a stock solution

according to the sample size. Store MSTFA at 4 °C

and the FAMEs at -20 °C.
 

NOTE: FAMEs include methylcaprylate,

methyl pelargonate, methylcaprate, methyllaurate,

methylmyristate, methylpalmitate, methylstearate,

methyleicosanoate, methyldocosanoate, lignoceric

acid methyl ester, methylhexacosanoate,

methyloctacosanoate, and triacontanoic acid

methylester, which are dissolved in CHCl3 at a

concentration of 0.8 µL/mL or 0.4 mg/mL for liquid or

solid standards, respectively.

3. Re-dry the pellet from the polar phase (stored at -80 °C)

using a vacuum concentrator for 30 min to avoid any

interference of H2O originating during the storage with

the solvents used for the downstream derivatization.

4. Add 40 µL of DR1.

5. Shake the samples at 950 × g for 2 h at 37 °C using an

orbital shaker, followed by a short spin-down of the liquid.

6. Add 70 µL of DR2.

7. Shake again at 950 × g for 30 min at 37 °C using an

orbital shaker.

8. Centrifuge briefly at room temperature before

transferring 90 µL into glass vials for GC-MS analysis.

9. Inject 1 µL to GC-MS splitless mode, depending on the

metabolite concentrations, with a constant helium carrier

gas flow of 2 mL/min. Injection temperature is set to 230

°C using a 30-m MDN-35 capillary column.
 

NOTE: Additional information, e.g., temperature

gradient, can be found in Table 1. The mass range is

set to 70-600 m/z with 20 scans/min. Include split modes

to enable the quantification of putative overloading

compounds, saving costs and time for extract re-

derivatization in such cases.

10. Include several QC samples in all daily batches and

a blank to ensure correction for analytical variation.

Randomize samples properly block-wise in sequential

order.

8. Chromatogram processing and compound
annotation

1. Filter chemical noise by defining intensity thresholds.

Include all QC samples while processing the

chromatograms.
 

NOTE: For large-scale data, noise filtering is crucial to

decrease computing time and processing power.

2. Align the chromatograms by defining a retention time

shift window. Check the chromatograms from each batch

to assess the intra- and inter-batch variation.

https://www.jove.com
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3. Perform peak detection depending on the peak shape,

e.g., height and width for full width at half-maximum

(FWHM) calculations.

4. Cluster isotopes to reduce redundant signals and filter

out singletons.
 

NOTE: See the Table of Materials for details on

software used for chromatogram processing. In-depth

protocols on how to process chromatograms using

various freely available software tools, e.g., MS-DIAL,

MetAlign, MzMine, and Xcalibur19,20 ,21 , are provided.

5. Use the ddMS2  data of a pooled QC sample for

compound annotation. Assess the molecular structure

by determining the monoisotopic mass and observing

common neutral losses, known charged aglycones,

and different types of cleavages, e.g., homolytic or

heterolytic16,22 .

6. For reporting metabolite data, follow the

recommendation described in Fernie et al. 201123 .
 

NOTE: Different computational metabolomics

approaches can be used to analyze metabolomics

data24,25 ,26 .

9. Normalization of large-scale metabolomics
dataset

1. Check the distribution of the internal standard(s) and

normalize by correcting for the response of single or

multiple internal standards.

2. Correct the peak intensities obtained from the

chromatogram over the exact sample weight by dividing

the peak intensities by the aliquoted homogenized

sample weight from step 2.5.

3. Correct for intensity drift across multi-batch series.

Perform QC-based correction methods such as locally

estimated scatterplot smoothing (LOESS)27  using R.
 

NOTE: Several tools and packages are available to

address the drift of the MS performance during the

acquisition of the whole batches28,29 .

4. Ensure normal distribution of traits by data

transformation, e.g., Box-Cox transformation30  using the

boxcox () function from the R package MASS for carrying

out GWAS.

5. Perform data scaling, e.g., Pareto scaling, for multivariate

analysis to ensure proper weighing of low abundant

compounds31 .
 

NOTE: If possible, perform a recovery assay to avoid

matrix effects, e.g., ion suppression14 .

10. Genome-wide association studies (GWAS)32

1. Call single nucleotide polymorphism (SNP) or structural

variants (SV) from the sequencing data33,34 .

2. Filter genotypic data for minor allele frequency (MAF) <

5% and missing rate of >10% to avoid low-frequency bias

using Tassel35 .

3. Calculate best linear unbiased predictions (BLUPs)

for each normalized feature over the experimental

repetitions to eliminate bias originating from

environmental factors (random effects) using the R

package Ime436 .

4. Use BLUPs of each feature individually to perform GWAS

using the rMVP package in R37 .
 

NOTE: Each metabolomics feature is viewed here as an

individual stand-alone phenotype.

https://www.jove.com
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5. While performing GWAS, correct for population structure

using principal component analysis (PCA) and identity by

state (IBS) or vanRaden to minimize confounding effects.

Furthermore, consider using a mixed linear model (MLM)

or a multi-locus mixed model (MLMM), as mixed models

contain fixed and random effects.

11. QTL detection

1. Check the SNPs showing significant association,

taking the Manhattan plots into consideration, for

linkage disequilibrium (LD) calculations to determine the

underlying genetic region. Perform LD calculations using

the R package LD heatmap or Tassel 5.

2. Check the associated SNPs for the effect size over the

trait by examining the trait levels for statistical changes

between haplotypes to find potential causal SNPs, e.g.,

SNPs leading to an amino acid change in the protein-

coding sequence, which could explain the phenotypic

variation.
 

NOTE: As SNP-trait associations do not necessarily yield

causal association, it is crucial to determine the genomic

region. Compound identity by feature annotation can

help immensely in finding the right candidate genes

in a specific genomic region. We suggest to combine

all detected QTL associated with certain compounds in

a pleiotropic map to underline the genetic regions38 ,

as shown in Figure 4. For validation of candidate

genes, several approaches can be performed (see the

discussion).

Representative Results

Successful metabolomics GWAS experiments should begin

with a proper experimental design, followed by sample

collection, extraction, data acquisition, and processing,

as illustrated in Figure 1. In this protocol, the

MTBE method15  was used to extract and analyze

hundreds of metabolites belonging to several compound

classes. Chromatography depends highly on the properties of

the utilized column as well as elution buffer mixtures. Figure

2 shows chromatograms of QC samples, indicating the

elution pattern of some major lipid classes in this analytical

system. The applied gradients for each platform are given

in Table 1. Strong emphasis was placed on handling

systemic errors in large-scale experiments. Performing large-

scale metabolomics is inherently associated with systemic

errors. For demonstration, we analyzed lipidomic data

across several common bean species. Supplemental Table

1 provides the extracted raw lipidomic data obtained after

chromatogram processing using the software indicated in

the Table of Materials. Following this protocol enabled

us to circumvent major issues in dealing with omics

data, especially while handling large sample sets. The

normalization procedure yields in accurate correction of

batch-wise analytical errors, as demonstrated in Figure 3.

Although increasing the numbers of QC samples would

increase the power of the normalization, this is not always

feasible due to cost and time constraints. For high-throughput

metabolomics GWAS with non-targeted metabolic features,

it is essential to illustrate higher numbers of trait-marker

association appropriately. A pleiotropic map38  combining

multiple GWAS results could be used to highlight the genomic

regions to which several traits are linked (Figure 4).
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Figure 1: Flowchart of the metabolomics-based GWAS in plants. Several steps starting from the experimental design

up to the detection of QTL are shown in the left panel. In the right panel, multiple figures are shown to support several

steps mentioned in the left panel. Starting from the right top, (1) a suggested sequence of samples is shown for LC-MS,

(2) pre- and post-normalized score plots of PCA, including a representative feature distribution pre- and post-processing,

with red indicating QC sample intensities, and (3) a Manhattan plot with significant associations to which LD and haplotype

distributions were generated. Abbreviations: GWAS = genome-wide association studies; QTL = quantitative trait loci; PCA

https://www.jove.com
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= principal component analysis; QC = quality control; LD = linkage disequilibrium; MS = mass spectrometry; LC-MS =

liquid chromatography-mass spectrometry; GC-MS = gas chromatography-mass spectrometry; LOESS = locally estimated

scatterplot smoothing; MLM/MLMM = mixed linear model/multi-locus mixed-model. Please click here to view a larger version

of this figure.

 

Figure 2: Chromatogram processing. Two QC chromatograms (base peak; lipid data) from different batches demonstrate

the batch-wise variation for certain lipid classes in the pooled QC samples. Four major lipid classes are indicated with

their respective elution windows in the in-house LC-MS system. The chromatograms were exported from MzMine21 .

Abbreviations: QC = quality control; LC-MS = liquid chromatography-mass spectrometry. Please click here to view a larger

version of this figure.
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Figure 3: Correction of systematic error. Principal component analysis of acquired lipidomic data, pre- (left, raw data) and

post-correction for systemic errors (right, batch loess). The lower panels illustrate the feature (Cluster_00005) distribution

over the samples (n=650) and batches (n=10) pre- (left) and post (right)-correction for analytical variation. Abbreviations:

PCA = principal component analysis; QC = quality control; LOESS = locally estimated scatterplot smoothing. Please click

here to view a larger version of this figure.
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Figure 4: Pleiotropic map illustrating the combined GWAS results. The pleiotropic map highlights regions in the whole

genome that are associated with several traits. The numbers on the outer rings indicate the corresponding chromosomes.

Each circlet represents an individual trait with its significantly associated SNPs. The colors represent different compound

classes (grey = compound class 1; green = compound class 2; purple = compound class 3; yellow = compound class 4). In

the case of inter-compound class associations with the same genomic region, genes are highlighted. The inner grey circle

shows the sum of all significant SNPs associated with a specific genomic position. The associations shown in this figure are

artificially generated only for illustration. Abbreviations: GWAS = genome-wide association studies; SNPs = single-nucleotide

polymorphisms. Please click here to view a larger version of this figure.
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UHPLC-MS settings for lipids

Time [min] Eluent A to B [%]* Information

0 - 1.00 45% A Eluent A: 1% 1M NH4-Acetate, 0.1%

acetic acid in water (UHPLC grade)

1.00 - 4.00 lg 45% - 25% A Eluent B: 1% 1M NH4-Acetate, 0.1% acetic acid

in acetonitrile/2-propanol 7:3 (UHPLC grade)

4.00 - 12.00 lg 25% - 11% A Flow rate: 400 µL/min

12.00 - 15.00 lg 11% - 0% A Injection volume: 2 µL

15.00 - 19.50 cw 0% A

19.50-19.51 0% - 45% A

19.51-24.00 eq 45%

UHPLC-MS/MS settings for polar and semi-polar metabolites

Time [min] Eluent A and B [%]* Information

0 - 1.00 99% A Eluent A: 0.1% formic acid in water (UHPLC grade)

1.00 - 11.00 lg 99% -60% A Eluent B: 0.1% formic acid in acetonitrile (UHPLC grade)

11.00 - 13.00 lg 60% - 30% A Flow rate: 400 µL/min

13.00 - 15.00 lg 30% - 1% A Injection volume: 3 µL

15.00 - 16.00 cw 1% A

16.00 - 17.00 lg 1% - 99% A

17.00 - 20.00 eq 99% A

GC-MS settings for derivatized metabolites

Time [min] Temperature [°C] Information

0 - 2.00 85 Carrier gas: Helium

2.00 - 18.66 lg 80 - 330 Flow rate: 2 mL/min

18.66 - 24.66 cw 330 Temperature gradient: 15 °C/min

24.66 rapid cooling Injection volume: 1 µL

Table 1: Gradient settings for each of the analytical platforms7 . Abbreviations: lg = linear gradient; cw = column

washing; eq = equilibrate; UHPLC-MS = ultra-high-performance liquid chromatography-mass spectrometry; UHPLC-MS/
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MS = ultra-high-performance liquid chromatography-tandem mass spectrometry; GC-MS = gas chromatography-mass

spectrometry. * = percentage value corresponds to eluent A; remaining percentage value corresponds to eluent B.

Supplemental Table 1: Raw lipidomics data. Indicates the

peak intensities for each of the detected clusters over each

sample. Please click here to download this Table.

Discussion

Both GC-MS and LC-MS are widely used tools for profiling

complex mixtures of various metabolite classes. Handling

large datasets with these tools is inherently associated with

a non-biological variation, e.g., analytical variation, which

interferes and biases the interpretation of the results. This

protocol presents a robust and high-throughput extraction

pipeline for comprehensive metabolic profiling to eliminate

variation of non-biological origin and conduct large-scale

"omics" studies. The volumes and concentrations used in this

protocol were adjusted for legume species in different tissues.

However, these parameters can be slightly modified and used

for large-scale metabolic samples from other plant species as

well.

The previously15  described MTBE-based extractions can

be used to analyze derivatized metabolites, semi-polar

metabolites, and lipids. This can be expanded for protein

and plant hormone extractions39 , which were out of the

scope of this protocol. Other extraction protocols rely on

dichloromethane:ethanol mixtures40,41 . Of these extraction

protocols, the MTBE:methanol extraction protocol provides

a favorable and less hazardous alternative to the existing

chloroform-based extraction protocols42  and does not

result in a protein pellet as an interphase between the

polar and lipid phases. Furthermore, MTBE methods have

already been used in several studies for various biological

samples43,44 ,45 .

This protocol discusses several crucial steps that might

lead to potential variation while handling a large number of

samples, e.g., during harvesting12,13 , extraction14 , as well

as randomization46 . Furthermore, there are additional issues

that have not been discussed in this protocol that must be

considered to ensure high-quality metabolomic data, e.g.,

matrix effect and ion suppression14 .

The power of QC-based normalization methods inherently

depends on the number of QC samples in each batch. As

mentioned earlier, although increasing the number would

increase the power, the intra-batch variation of the QCs is

relatively marginal compared to inter-batch variation in these

analytical systems, as illustrated in Figure 3. Overall, there

are other QC-based normalization methods, such as systemic

error removal using random forest (SERRF), which have

been shown to outperform most of the other normalization

methods such as batch-wise-ratio, normalization using an

optimal selection of multiple internal standards (NOMIS),

and probabilistic quotient normalization (PQN)47 . However,

SERRF relies on multiple QC samples in each batch, e.g.,

every tenth sample, which is not feasible while handling

large numbers of samples. The main advantage of QC-

based normalization over other data-driven or internal

standard-based methods is that it retains the essential

biological variation while accommodating unwanted technical

variation28 . Readers may refer to this review on the handling

of variation28 .
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One main issue in GWAS is the rate of false positives,

which originate mostly due to the linkage of causal and

non-causal sites48,49 . Second, the conservative statistical

correction approaches, e.g., Bonferroni and FDR, correct

for the number of independent tests, which is not equal

to the number of assayed SNPs in GWAS due to the

linkage between proximate SNPs50,51  Therefore, the actual

number of independent tests is often lower. Another way

to reduce the conservative statistical threshold would be

to reduce the number of tested SNPs used for GWAS

based on linkage decay over defined genomic regions52 . The

GWAS-integrated high-throughput metabolomics platform

described in this protocol has a wide range of applications.

In particular, it will facilitate improvements in crop breeding

by changing the metabolite/lipid composition for industrially

and nutritionally desired levels. Overall, metabolomics has

provided an in-depth insight into the genetic architecture

of a plethora of metabolites and metabolic diversification

that occurred during crop domestication over the last

decades, indicating the vast potential of metabolomics-

associated breeding53 . The molecular biological approaches

for downstream QTL validation include the generation of

CRISPR/Cas9 mutant lines54 , T-DNA insertion lines55 ,

stable and/or transient overexpression lines56 , VIGS, ex

vivo metabolomics approaches57  next to the conventional

approach in generating cross F2 populations as well as cross

validation in different populations.

By performing the necessary correction for the analytical

variations as described above, several integrated approaches

can be performed in addition to GWAS, such as metabolite-

metabolite, metabolite-lipid correlation analysis, correlation

analysis to phenomic data to shed light on more complex

traits, and/or co-expression analysis to further unravel the

basis of biological systems58 .
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