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Abstract

Myocardial ischemia and reperfusion injury (MIRI), induced by coronary heart disease

(CHD), causes damage to the cardiomyocytes. Furthermore, evidence suggests that

thrombolytic therapy or primary percutaneous coronary intervention (PPCI) does not

prevent reperfusion injury. There is still no ideal animal model for MIRI. This study aims

to improve the MIRI model in rats to make surgery easier and more feasible. A unique

method for establishing MIRI is developed by using a soft tube during a key step of the

ischemic period. To explore this method, thirty rats were randomly divided into three

groups: sham group (n = 10); experimental model group (n = 10); and existing model

group (n = 10). Findings of triphenyltetrazolium chloride staining, electrocardiography,

and percent survival are compared to determine the accuracies and survival rates of

the operations. Based on the study results, it has been concluded that the improved

surgery method is associated with a higher survival rate, elevated ST-T segment, and

larger infarct size, which is expected to mimic the pathology of MIRI better.

Introduction

Ischemic heart disease is the leading cause of mortality

worldwide. Cardiovascular mortality has a crucial role

in public health and epidemiology globally1 . Myocardial

ischemia and reperfusion injury play essential functions

in ischemic heart disease, which refers to a complex

pathophysiological process that includes depletion of
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adenosine triphosphate2 , excessive generation of reactive

oxygen species3 , inflammatory reactions4 , and mitochondrial

dysfunction owing to calcium overload5 , which triggers acute

myocardial infarction via metabolic dysfunction and structural

damage6 .

However, the detailed mechanisms underlying myocardial

ischemia and reperfusion injury (MIRI) remain unknown.

The present work aims to develop a unique animal model

that adequately simulates the clinical presentation and

treatment of MIRI. Otherwise, in the process of MIRI model

research, large animals7  (such as pigs) require interventional

surgery, which is expensive. Small animals (such as rabbits8 ,

mice9,10 ,11 ,12 , and rats13 ) require delicate surgery under

microscopy10 , remote-controlled saccules8,11 , or squeezing

the heart out of the cavity9 , which requires a high

level of technology and may cause several postoperative

complications that disturb the accuracy of findings. An ideal

MIRI model with a higher survival rate and lower cost will play

a crucial role in pathological research.

This study aimed to combat these issues by establishing a

more accessible and feasible model of MIRI in rats to facilitate

the research on the pathology of MIRI, which could lead to the

discovery of clinical therapies for MIRI.

Protocol

The study was approved by the Animal Care and Use

Committee of the Nanjing University of Chinese Medicine

(permission no. 202004A002). The study strictly followed the

National Institutes of Health (NIH) guidelines on the Use

of Laboratory Animals (NIH publication No. 85-23, revised

2011). Thirty male Sprague-Dawley rats (weight, 300 ± 50 g;

age, 12 ± 14 weeks) were used in this work.

1. Animal preparation

1. Deprive the rats of food and water for 12 h before

surgery. Preoperative fasting aims to prevent pulmonary

aspiration14 .

2. Sterilize all instruments before surgery using a high-

pressure steam sterilizer.

3. Anesthetize the rats by administering pentobarbital

sodium (1.5%, 75 mg/kg) via intraperitoneal injection

(see Table of Materials).

4. Assess the effectiveness of anesthesia by performing the

pinch-toe test.
 

NOTE: The rat is considered sufficiently anesthetized if

no reflexes are observed when its hind paw is held by

the tweezers.

5. Straighten the middle section of two paper clips to form

an "S" shape. Pull down the wide section of each "S" to

form a small retractor.

6. Cut a 2 mm diameter polyvinyl chloride (PVC) tube into

7 mm-length pieces. Insert a 10 cm long 4-0 suture into

the PVC tube, and tie its ends.

7. Ligate the left anterior descending (LAD) coronary artery

and the PVC tube together using a 6-0 suture. Cut a

groove in the middle of the PVC tube using ophthalmic

scissors, and use the groove to thread the 6-0 suture

through the tube to prevent it from falling off.
 

NOTE: The PVC tube and "S" shape retractors are

shown in Supplementary Figure 1.

2. Surgery procedure

1. Perform surgery to generate the improved MIRI rat model

following the steps below.
 

https://www.jove.com
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NOTE: The animal model group generated by the

improved MIRI method is referred to as the experimental

model group throughout the article.

1. After anesthesia (step 1.2), fix the limbs of the rat

with tape by placing the rat on the surgical board in

the supine position. Shave the neck and left anterior

chest area with depilatory cream, and clean the skin

with 75% alcohol and iodophor scrub.

2. Cut the skin of the neck lengthwise along the median

cervical line using ophthalmic scissors.

3. Separate the neck muscles using ophthalmic

tweezers, and place a retractor (step 1.4) on each

side to retract them further.
 

NOTE: It is necessary to expose the trachea

adequately, as it is critical for preventing bleeding

from the thyroid gland during this step.

4. After exposing the trachea, identify the space

between the fourth and fifth tracheal rings. This

space is the puncture point.

5. Mark this point using the blunt edge of a needle tip.

Make a 3 mm incision parallel to the cricoid cartilage

at this point.

6. Insert a suction trocar (see Table of Materials)

into the trachea via the incision (step 2.1.5), and

mechanically ventilate the rat to maintain normal

respiration at a rate of 80 breaths/min and a tidal

volume of 8 mL/kg.

7. Next, make a 4-5 cm incision from the xiphoid to

the middle of the second left intercostal space while

holding the scalpel at a 45° angle. Gently and slowly,

separate the pectoralis major and serratus anterior

muscles using ophthalmic tweezers to access the

intercostal space.

8. Make a 1.5 cm incision transversely between the left

third and fourth ribs using ophthalmic scissors.

9. If required, cut out the fourth rib to expose the heart

covered by the left lung. This gives better visibility.

10. To prevent injuries, place cotton balls soaked in

the physiological saline solution above the lungs in

the thoracic cavity. Dissect the pericardium using

ophthalmic tweezers, lift the left atrial appendage by

tweezers, and identify the coronary ostium present

at the root of the aortic artery.

11. In the section between the left lung and auricle, ligate

the LAD and the pre-prepared short tube (step 1.6)

together using a 6-0 surgical suture, and tie it using a

slipknot. Place the slipknot in the groove of the PVC

tube, and tighten the ligated tube and LAD using a

second slipknot for 45 min15  (Figure 1A,B).

12. Record the color change in the anterior part

of the left ventricle and ST-segment elevation

on electrocardiogram (ECG) during the ischemia

period.
 

NOTE: The anterior part of the left ventricle turns

pale during the ischemia period.

13. Clamp the chest muscles and skin using an artery

clip, and cover the wound with moist saline gauze.

14. Loosen the slipknot, and remove the pre-prepared

short tube after 45 min15  (Figure 1C).

15. Keep the rats anesthetized during reperfusion for 2

h.

2. Perform surgery to generate the rat model following the

previously published procedure16 .
 

NOTE: This animal model group is referred to as the

existing model group throughout the article.

https://www.jove.com
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1. Before ligation of the LAD coronary artery, perform

the same steps as the experimental model group.

2. During the ischemic period, ligate each rat's proximal

LAD coronary artery with a slipknot only using a

6-0 surgical suture at the same position as the

experimental model group and tie a slipknot for 45

min.

3. After the ligation, loosen the slipknot with tweezers,

suture the incisions of the rat with a suture

needle and tweezers, and keep the animal in deep

anesthesia of 1.5% pentobarbital sodium throughout

the period of reperfusion17,18 ,19  for 2 h before

harvesting the rat's hearts.

3. Assessment of triphenyltetrazolium chloride
staining

1. At the end of reperfusion, the rats are euthenized while

still deeply anesthetized. Sacrifice the rats and harvest

their hearts16,20  immediately. Wash the hearts in PBS

solution, and store them at −20 °C for ~20 min to harden

the tissues.

2. Subsequently, cut the hearts into 2 mm slices

with a microtome blade, incubate them with 2%

triphenyltetrazolium chloride (TTC) (see Table of

Materials) at 37 °C for ~30 min, and fix them in 10%

neutral formalin.

3. Photograph the heart slices, and calculate the infarct

areas using an image processing program of ImageJ

software (see Table of Materials).
 

NOTE: Due to the staining, the infarct sites appear pale

white, whereas normal tissues appear dark red.

4. Histological staining

1. Harvest the hearts under deep anesthesia of 1.5%

pentobarbital sodium at the end of the reperfusion period.

2. Fix the hearts in 10% formalin at 4 °C for 48 h.

3. Subsequently, section the hearts with a microtome into

at least 6 slices (5 µm thick) and ensure at least three

slices for hematoxylin and eosin (H&E) and Masson

staining20,21 .

4. Observe the slides under a light microscope, and

photograph them.

5. ECG assessment

1. Randomly divide animals into experimental or existing

MIRI model groups or sham groups to assess the ECG

changes.

2. Anesthetize all rats during the surgical ligations and

assess standard limb lead II tracing20,21  to identify ECG

changes and confirm myocardial ischemia.

3. Store all images in a digital library.

6. Statistical analysis

1. Perform statistical analyses using scientific graphing and

statistics software (see Table of Materials).

2. Express all data as mean ± standard error of the mean.

After normality and lognormality tests of each group,

perform a one-way analysis of variance and t-tests22  to

determine significant differences among the groups.

Consider p-value <0.05 as statistically significant.

Representative Results

TTC staining
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Heart sections from rats that underwent either the existing or

improved MIRI procedure or sham surgery were stained with

TTC, and the images were stored digitally and analyzed using

ImageJ. Rats that underwent either the already existing or

improved MIRI procedures had myocardial infarctions, while

rats from the sham group did not (Figure 2B). Compared

to rats in the sham group, rats in the existing (p < 0.0001)

and experimental (p < 0.0001) MIRI model groups had

a significant difference in myocardial infarct size, and the

experimental model group had a larger myocardial infarct size

than the existing model group (p = 0.0176) (Figure 3B).

Histological staining
 

Analysis of specimens stained using H&E and Masson

stains22,23  showed that compared to the sham group,

the cardiomyocytes of both the experimental and the

existing model groups had experienced critical damage and

nucleolysis and were infiltrated by numerous neutrophils

(Figure 3).

ECG test
 

The ECG ST-T segments of rats in the existing and

experimental MIRI model groups were elevated compared

with those of rats in the sham group (Figure 4A), and

the differences between the experimental model and sham

groups (p < 0.0001) or the existing model and sham groups

(p < 0.0001) were significant (Figure 4B). Furthermore, the

ST-T segment was more elevated in the experimental model

group than in the existing model group (p = 0.0274) (Figure

4C).

Percent survival
 

The survival rate was significantly different between the two

MIRI model groups (Figure 4D). Four of the ten rats died in

the existing model group. The mortality rate was 40% during

the reperfusion period. In contrast, none of the rats in the

experimental model group died during surgery, demonstrating

that the current improved model had a higher survival rate (p

= 0.0291).

 

https://www.jove.com
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Figure 1: Key steps of the myocardial ischemic and reperfusion injury (MIRI) model surgery. Green points indicate

the protocol of ligature during the ischemic period, including placing the soft tube on the coronary arteries (A), hooking the

suture line into the groove of the pre-prepared soft tube (B), loosening the slipknot, and removing the soft tube when the

reperfusion period was started (scale bar = 1 cm) (C). LAA: Left Atrial Appendage, RAA: Right Atrial Appendage, LAD: Left

Anterior Descending, RCA: Right Coronary Artery, IVC: Inferior Vena Cava, SVC: Superior Vena Cava, AO: Aorta Artery, PA:

Pulmonary Artery. Please click here to view a larger version of this figure.

 

Figure 2: The whole surgery procedure and differences in triphenyltetrazolium chloride (TTC) staining between

different groups. The pre-prepared small retractor (scale bar = 15 mm), soft tube (scale bar = 10 mm), and the whole

surgery (scale bar = 15 mm) are shown (A). Thirty rats were randomly divided into the experimental (n = 10), sham group (n

= 10), and existing model (n = 10) groups. TTC staining indicated that both the experimental and existing models' groups had

significant changes compared to the sham group (B). The anterior wall of the myocardium in the experimental and the lateral

wall in the existing model groups turned pale white, confirming the ischemic area's location (scale bar = 5 mm). The "existing

model" is depicted as the "old model" in the figure. Please click here to view a larger version of this figure.
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Figure 3: Differences in H&E and Masson staining between groups. Thirty male Sprague Dawley rats were randomly

divided into the experimental (n = 10), sham group (n = 10), and existing model (n = 10) groups, and the comparison of cell

morphological changes between groups is shown (scale bar = 2 mm). Hematoxylin and Eosin (H&E), and Masson staining

show that myocardial cells of the experimental model and existing model groups have critical damage, nucleolysis, and

are infiltrated by numerous neutrophils compared to those of the sham group (scale bar = 100 µm). The "existing model" is

depicted as the "old model" in the figure. Please click here to view a larger version of this figure.
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Figure 4: Differences in statistical results between groups.Thirty male Sprague Dawley rats were randomly divided into

the experimental (n = 10), sham group (n = 10), and existing model (n = 10) groups. Electrocardiogram findings show that

compared to the already existing model group, the experimental model group has a larger myocardial infarct size (****p <

0.0001, *p = 0.0176) (A), a higher ST-segment elevation (****p < 0.0001, *p = 0.0274) (B), and a higher survival percentage

(p = 0.0291) (C). Especially, rats of the existing model group were more likely to die at the beginning of the ischemia period

and the beginning of the reperfusion period (D). The "existing model" is depicted as the "old model" in the figure. Please click

here to view a larger version of this figure.

Supplementary Figure 1: The details of the pre-prepared

retractor and PVC tube. The pre-prepared retractor (A) and

PVC tube (B) are shown. Please click here to download this

File.

Discussion

The main difference between the already existing and

improved methods was the use of PVC tubes in the ligation

process. In the existing surgery method, the myocardial
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tissue was ligated using the 6-0 silk suture only, which

induced damage to the myocardium during ligation resulting

in intraoperative death. Moreover, the pulsation of the heart

would loosen the slipknot. In contrast, in the improved method

with the PVC tube, the slipknot placed in the groove of the

tube could be tightened, and the area of the myocardium

affected by ligation increased. These benefits were observed

during the experimental procedure and confirmed by the TTC

staining and percent survival findings.

The critical step of the improved surgery method was

placing the soft tube on the proximal LAD coronary artery,

accompanied by nerves, lymphatic vessels, and myocardial

tissue during ligation in the ischemic period. This pre-

prepared soft tube can act as a cushion that protects the

peripheral tissues (nerves, myocardia, and lymphatic vessels)

and decreases mortality during coronary artery ligation. The

surgery performed by the already existing method was similar

to the surgery for myocardial infarction. The percent survival

findings indicated that rats in the existing model group mainly

died during the ischemic period (two rats died at 2 min post-

ligation, and two rats died at 45 min post-ligation). Otherwise,

the underlying causes of death are still unclear, and there are

a series of hypotheses, including additional damage to the

nervous structures23 , lymphatic vessels, and myocardia.

Regarding nervous damage, previous studies have indicated

that during the ischemic period in the animal model, besides

the direct local effects of ischemia on the nervous structures,

there is also probably a significant decrease in neuropeptide

Y (NPY) levels that contribute to disturbances in axoplasmic

transport in the sympathetic innervation24 . This finding

agrees with results reported by Han et al.25 , who revealed

that a gradual disappearance of NPY occurred within the

infarcted myocardium after ligation of the LAD coronary

artery in rats. However, the role of NPY in this context

remains unclear. Its deletion attenuates cardiac dysfunction

and apoptosis during acute myocardial infarction26 , and

is associated with arrhythmia27 , high blood pressure, and

coronary microvascular function28 .

Furthermore, adverse obstruction of cardiac lymph flow

occurred during the ischemic period, leading to severe

cardiac edema, left dysfunction, and hemorrhages29 , which

might be another cause of death in rats. During this

pathological process, the ligature of the LAD coronary artery

might be attributed to the obstruction of coronary arteries or

cardiac lymphatic transport within the infarct area, which can

cause additional complications, such as adverse remodeling

of the epicardial collector lymphatics, reduced lymphatic flow,

and persistent edema30 .

Therefore, circulation in lymphatic vessels plays a functional

role in cardiac homeostasis31  and wound healing32 , and

the percent survival findings in this study suggest that the

improved MIRI surgical procedure might avoid lymphatic

damage and promote lymphatic reperfusion by placing the

soft tube on the LAD coronary artery during ligature. In

comparison, the existing surgery method is more likely to tear

the heart muscle and cause a massive hemorrhage during

ligation of the LAD coronary artery, without the cushioning

effect of the soft tube. Additionally, the pre-prepared soft tube

diameter was much larger than the 6-0 silk suture, and the

tube may have contracted and induced a larger infarct size

when the slipknot was tied to the tube during the ischemic

period.

This study had a few limitations. The infarct size of the heart

was analyzed in the preliminary experiment. The substitution

formula (N = 7.75) was calculated using a previously reported

equation33 . Considering the possible death of rats during

https://www.jove.com
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the operation, N was raised by 25%; hence, n = 10 (ten

rats for each group) was decided. Otherwise, the already

existing method to generate the MIRI model had a high

mortality rate. Therefore, few cases (low sample size) in the

experimental model group influenced the statistical findings.

Several assessments, including echocardiography30 , Evans

blue staining34 , and the myocardial enzyme measurement35 ,

were essential for cardiac function evaluation and analysis.

Owing to the low sample size of this work, these assessments

were not performed and will be described in a future study

of pharmacodynamic research in MIRI. However, considering

that the existing surgical procedure to generate the MIRI

model is associated with extensive myocardial damage, it

is worthwhile to report this present method to improve the

modeling of MIRI in rats and bring light to this preclinical

model that correctly simulates ischemic heart disease.

In conclusion, the improved surgery method to generate

the MIRI model had a higher survival rate, an elevated

ST-T segment, and a larger infarct size than the existing

MIRI model generation method, suggesting that the improved

model better simulates MIRI pathology.
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