Back to chapter

11.8:

לחץ אדים

JoVE Core
Química
É necessária uma assinatura da JoVE para visualizar este conteúdo.  Faça login ou comece sua avaliação gratuita.
JoVE Core Química
Vapor Pressure

Idiomas

COMPARTILHAR

במערכת סגורה, במצב של שיווי משקל בין אדים לנוזלים, עיבוי ואידוי מתרחשים באותו קצב, ללא שינוי נטו במסות של שני השלבים. הלחץ החלקי המופעל על ידי הגז במצב של שיווי משקל דינמי עם הנוזל שלו נקרא לחץ האדים של החומר. ככל שיש יותר מולקולות בשלב האדים, כך לחץ האדים יהיה גבוה יותר.לכן, לחץ אדים הוא השתקפות של הנטייה של מולקולות נוזל לברוח למצב אדים בטמפרטורה נתונה. זאת כמות מדידה, הנקבעת על ידי כוחות בין-מולקולריים. נדיפות איכותית מתארת נטייה זו, המבוססת על לחצי האדים של נוזלים המוחזקים באותם תנאים.נשווה, לדוגמה, בין הקסאן ומים המוחזקים באותה טמפרטורה. כיוון שכוחות הפיזור בהקסאן חלשים בעוד שבמים קשרי המימן חזקים, הקסאן מתאדה ביתר קלות ממים. במערכת סגורה בשיווי משקל, להקסאן יש לחץ אדים גבוה יותר לעומת מים:הקסאן נדיף, ואילו מים אינם נדיפים.ההתפלגות התרמית של אנרגיות במצב הנוזל היא פונקציה של טמפרטורה. חימום נוזל מעלה את הטמפרטורה שלו, מה שמעיד על כך שהמולקולות הן בעלות אנרגיות תרמיות גבוהות יותר, וכתוצאה מכך, קצב האידוי מהיר יותר וכך גם לחץ האדים. כשלחץ האדים שווה ללחץ החיצוני, הנוזל מתחיל לרתוח, והטמפרטורה שבה זה קורה נקראת נקודת הרתיחה של הנוזל.נקודת הרתיחה הנורמלית של נוזל היא הטמפרטורה שבה לחץ האדים של הנוזל שווה לאטמוספרה אחת. יחד עם זאת, בלחץ חיצוני שונה, הנוזל ירתח בטמפרטורה שונה מנקודת הרתיחה הרגילה שלו. לדוגמה, בגובה פני הים הסטנדרטי, היכן שהלחץ האטמוספרי הוא 1, מים רותחים ב-100 מעלות צלזיוס.בגובה רב יותר, כשהלחץ האטמוספרי נמוך מ-1, שלב האדים מצריך פחות מולקולות כדי להשתוות ללחץ החיצוני הנמוך. זה מסביר מדוע מים ירתחו בטמפרטורה נמוכה יותר. בסיר לחץ, הלחץ החיצוני הגדול יותר דורש יותר מולקולות בשלב האדים, ולכן המים צריכים להיות בטמפרטורה גבוהה יותר כדי לרתוח.

11.8:

לחץ אדים

When a liquid vaporizes in a closed container, gas molecules cannot escape. As these gas phase molecules move randomly about, they will occasionally collide with the surface of the condensed phase, and in some cases, these collisions will result in the molecules re-entering the condensed phase. The change from the gas phase to the liquid is called condensation. When the rate of condensation becomes equal to the rate of vaporization, neither the amount of the liquid nor the amount of the vapor in the container changes. The vapor in the container is then said to be in equilibrium with the liquid. Keep in mind that this is not a static situation, as molecules are continually exchanged between the condensed and gaseous phases. Such is an example of dynamic equilibrium, the status of a system in which reciprocal processes (for example, vaporization and condensation) occur at equal rates.

The pressure exerted by the vapor in equilibrium with a liquid in a closed container at a given temperature is called the liquid’s vapor pressure (or equilibrium vapor pressure). The area of the surface of the liquid in contact with a vapor and the size of the vessel have no effect on the vapor pressure, although they do affect the time required for the equilibrium to be reached. The chemical identities of the molecules in a liquid determine the types (and strengths) of intermolecular attractions possible; consequently, different substances will exhibit different equilibrium vapor pressures. Relatively strong intermolecular attractive forces will serve to impede vaporization as well as favoring “recapture” of gas-phase molecules when they collide with the liquid surface, resulting in a relatively low vapor pressure. Weak intermolecular attractions present less of a barrier to vaporization, and a reduced likelihood of gas recapture, yielding relatively high vapor pressures.

Consider four compounds: ethanol (CH3CH2OH), ethylene glycol (C2H6O2), diethyl ether (C4H10O), and water (H2O).

Image1

Diethyl ether has a very small dipole, and most of its intermolecular attractions are London dispersion forces. Although this molecule is the largest of the four under consideration, its IMFs are the weakest and, as a result, its molecules most readily escape from the liquid. It also has the highest vapor pressure. Due to its smaller size, ethanol exhibits weaker dispersion forces than diethyl ether. However, ethanol is capable of hydrogen bonding and, therefore, exhibits stronger overall IMFs, which means that fewer molecules escape from the liquid at any given temperature, and so ethanol has a lower vapor pressure than diethyl ether. Water is much smaller than either of the previous substances and exhibits weaker dispersion forces, but its extensive hydrogen bonding provides stronger intermolecular attractions, fewer molecules escaping the liquid, and a lower vapor pressure than for either diethyl ether or ethanol. Ethylene glycol has two −OH groups, so, like water, it exhibits extensive hydrogen bonding. It is much larger than water and thus experiences larger London forces. Its overall IMFs are the largest of these four substances, which means its vaporization rate will be the slowest and, consequently, its vapor pressure the lowest.

As temperature increases, the vapor pressure of a liquid also increases due to the increased average KE of its molecules. Recall that at any given temperature, the molecules of a substance experience a range of kinetic energies, with a certain fraction of molecules having sufficient energy to overcome IMF and escape the liquid (vaporize). At a higher temperature, a greater fraction of molecules have enough energy to escape from the liquid. The escape of more molecules per unit of time and the greater average speed of the molecules that escape both contribute to the higher vapor pressure.

When the vapor pressure increases enough to equal the external atmospheric pressure, the liquid reaches its boiling point. The boiling point of a liquid is the temperature at which its equilibrium vapor pressure is equal to the pressure exerted on the liquid by its gaseous surroundings. For liquids in open containers, this pressure is that due to the earth’s atmosphere. The normal boiling point of a liquid is defined as its boiling point when surrounding pressure is equal to 1 atm (101.3 kPa). At pressures greater than 1 atm, the boiling point of the liquid is higher than its normal boiling point.

This text is adapted from Openstax, Chemistry 2e, Section 10.3: Phase Transitions.