Summary

の電気生理学的記録ショウジョウバエ

Published: May 21, 2009
doi:

Summary

電気生理学的記録から<em>ショウジョウバエ</em>胚は、開発途上筋肉と神経細胞の電気的特性の分析だけでなく、グルタミン酸作動性神経筋接合部と中央のコリン作動性およびGABA作動性シナプスにおける機能的シナプス形成の特性評価を可能にする。

Abstract

ショウジョウバエ胚発生と機能的神経科学の両方の研究のための最高の遺伝的モデルです。伝統的に、これらのフィールドは非常に大部分が独立の歴史と科学的なコミュニティと、互いに分離されています。しかし、これらは通常異なる学問分野間のインターフェイスは、神経回路形成の最終段階、機能化学シナプスの機能的電気信号特性と分化の買収の基礎となる発生プログラムです。このインタフェースは、調査のために非常に重要な領域です。 ショウジョウバエでは、機能開発のこれらのフェーズは、胚発生の最後の3分の1の間(25℃)<8時間の期間中に発生します。この後期発達期間が長くタフな、不浸透性の表皮クチクラの堆積により調査に難治性と考えられた。画期的な進歩は、局所的に後期胚の制御解剖を有効にするためにキューティクルに適用できる水重合外科接着剤のアプリケーションでした。背側縦切開で、胚は実験的な調査に腹神経索と体壁の筋肉組織を露出させる、フラットなレイアウトすることができます。ホールセルパッチクランプ法は、個々に識別可能な神経細胞と体細胞の筋から記録するために使用することができる。これらの記録の構成は、イオン電流とニューロンと筋肉の両方の活動電位伝播の外観と成熟を追跡するために使用されています。これらの電気的性質に影響を与える遺伝的変異体はイオンチャネルとそれに関連するシグナル伝達複合体の分子組成を明らかにするために、そして機能的な分化の分子機構の探索を開始するために特徴づけられている。特定の焦点は、中枢神経系と末梢の両方で、シナプス結合のアセンブリとなっています。グルタミン酸作動性神経筋接合部(NMJ)は、光学イメージングと電気生理学的記録の組み合わせに最もアクセスが可能です。ガラス吸引電極は、電圧クランプ筋肉で行われた興奮性接合の電流(EJC)の録音で、末梢神経を刺激するために使用されます。この録音の設定は、シナプスの機能分化をグラフ化し、シナプス前性グルタミン酸放出特性の外観と成熟を追跡するために使用されています。さらに、シナプス後のプロパティは、グルタミン酸受容体のフィールドの外観と成熟を測定するために、筋肉の表面に直接グルタミン酸のイオン導入や圧力のアプリケーションを介して個別に測定することができる。このように、両方の前とシナプス後要素が胚シナプス形成時に個別にまたは組み合わせて監視することができます。このシステムは、大きく胚性シナプス形成を損なうため、シナプスの接続と機能的なシナプス伝達特性の仕様と差別化を支配する分子メカニズムを明らかに遺伝的変異体を分離し、特徴付けるために使用されています。

Protocol

パート1:設備&備品 ショウジョウバエの胚からの電気生理学的記録は、最初に別のJoveのビデオで説明されている胚の解剖技術、の能力を必要とします。 ショウジョウバエの胚からの電気生理学的記録は、標準のパッチクランプ記録の構成を採用しています。他の多くの準備に適したパッチクランプ記録装置とソフトウェアはまた、 ショウジョウバエの胚…

Discussion

ショウジョウバエの胚からの電気生理学的記録は、マニュアル操作と解剖が必要になります。準備の健康、およびレコーディングの結果としての品質は、迅速かつきちんと記録するための脆弱な胚組織を準備するためにできることつに依存し、実験を実行してください。実験者は、一度に両方に取り組むしようとする前に胚の解剖とパッチクランプ電気生理学の両方を習得している必…

Declarações

The authors have nothing to disclose.

Acknowledgements

KBはNIH助成金GM54544によってサポートされています。

Referências

  1. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K., Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965-971 (1999).
  2. Auld, V. J., Fetter, R. D., Broadie, K., Goodman, C. S. Gliotactin a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell. 81, 757-767 (1995).
  3. Baines, R. A., Bate, M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18, 4673-4683 (1998).
  4. Baines, R. A., Robinson, S. G., Fujioka, M., Jaynes, J. B., Bate, M. Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila. Curr. Biol. 9, 1267-1270 (1999).
  5. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523-1531 (2001).
  6. Bate, M. The embryonic development of the larval muscles in Drosophila. Development. 110, 791-804 (1990).
  7. Bate, M., Martinez Arias, A., Bate, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , (1993).
  8. Baumgartner, S., JT, L. i. t. t. l. e. t. o. n., Broadie, K., MA, B. h. a. t., Harbecke, R., JA, L. e. n. g. y. e. l., Chiquet-Ehrismann, R., Prokop, A., Bellen, H. J. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell. 87, 1059-1068 (1996).
  9. AH, B. r. a. n. d. Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401-415 (1993).
  10. Brand, A. GFP as a cell and developmental marker in the Drosophila nervous system. Methods Cell Biol. 58, 165-181 (1999).
  11. Broadie, K., Sullivan, W., Ashburner, M., Hawley, R. S. Electrophysiological Approaches to the Neuromusculature. Drosophila Protocols. , 273-296 (2000).
  12. Broadie, K., Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci. 13, 144-166 (1993a).
  13. Broadie, K., Bate, M. Development of larval muscle properties in the embryonic myotubes of Drosophila melanogaster. J. Neurosci. 13, 167-180 (1993b).
  14. Broadie, K., Bate, M. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis. Neuron. 11, 607-619 (1993c).
  15. Broadie, K., Bate, M. Synaptogenesis in the Drosophila embryo: innervation directs receptor synthesis and localization. Nature. 361, 350-353 (1993d).
  16. Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T., Schwarz, T. L. The absence of Synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl. Acad. Sci. USA. 91, 10727-10731 (1994).
  17. Broadie, K., Prokop, A., Bellen, H. J., O’Kane, C. J., Schulze, K. L., Sweeney, S. T. Syntaxin and Synaptobrevin function downstream of vesicle docking in Drosophila. Neuron. 15, 663-673 (1995).
  18. Broadie, K., Rushton, E., Skoulakis, E. C. M., Davis, R. L. e. o. n. a. r. d. o. a 14-3-3 protein involved in learning, regulates presynaptic function. Neuron. 19, 391-402 (1997).
  19. Broadie, K., Skaer, H., Bate, M. Whole-embryo culture of Drosophila: development of embryonic tissues in vitro. Roux’s Arch. Develop. Biol. 201, 364-375 (1992).
  20. Campos-Ortega, J., Hartenstein, V. . The embryonic development of Drosophila melanogaster. , (1985).
  21. Deitcher, D. L., Ueda, A., Stewart, B. A., Burgess, R. W., Kidokoro, Y., Schwartz, T. L. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18, 2028-2039 (1998).
  22. Featherstone, D. E., Broadie, K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res. Bull. 53, 501-511 (2000).
  23. Featherstone, D. E., Rushton, E. M., Hilderbrand-Chae, M., Phillips, A. M., Jackson, F. R., Broadie, K. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron. 27, 71-84 (2000).
  24. Featherstone, D. E., Davis, W. S., Dubreuil, R. R., Broadie, K. Drosophila alpha- and beta-spectrin mutations disrupt presynaptic neurotransmitter release. J Neurosci. 21, 4215-4224 (2001).
  25. Featherstone, D. E., Rushton, E., Broadie, K. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release. Nat Neurosci. 5, 141-146 (2002).
  26. Featherstone, D. E., Rushton, E., Rohrbough, J., Liebl, F., Karr, J., Sheng, Q., Rodesch, C. K., Broadie, K. An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J. Neurosci. 25, 3199-3208 (2005).
  27. Fergestad, T., Davis, W. S., Broadie, K. The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J Neurosci. 19, 5847-5860 (1999).
  28. Fergestad, T., Wu, M. N., Schulze, K. L., Lloyd, T. E., Bellen, H. J., Broadie, K. Targeted mutations in the syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission. J Neurosci. 21, 9142-9150 (2001).
  29. Fergestad, T., Broadie, K. Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci. 21, 1218-1227 (2001).
  30. Goodman, C. S., Doe, C. Q., Bate, M., Martinez Arias, A. Embryonic Development of the Drosophila Central Nervous System. In The Development of Drosophila melanogaster. , 1131-1206 (1993).
  31. Harrison, S. D., Broadie, K., Goor, J. v. a. n. d. e., Rubin, G. M. Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron. 13, 555-566 (1994).
  32. Huang, F. D., Woodruff, E., Mohrmann, R., Broadie, K. Rolling blackout is required for synaptic vesicle exocytosis. J. Neurosci. 26, 2369-2379 (2006).
  33. Jan, L. Y., Jan, Y. N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. 262, 189-214 (1976).
  34. Jan, L. Y., Jan, Y. N. L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J. Physiol. 262, 215-236 (1976b).
  35. Kidokoro, Y., Nishikawa, K. I. Miniature endplate currents at the newly formed neuromuscular junction in Drosophila embryos and larvae. Neuroscience Research. 19, 143-154 (1994).
  36. Landgraf, M., Bossing, T., Technau, G. M., Bate, M. The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642-9655 (1997).
  37. Mohrmann, R., Matthies, H. J., Woodruff III, E., Broadie, K. Stoned B mediates sorting of integral synaptic vesicle proteins. Neurociência. 153, 1048-1063 (2008).
  38. Nishikawa, K. I., Kidokoro, Y. Junctional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J. Neurosci. 15, 7905-7915 (1995).
  39. Renden, R., Berwin, B., Davis, W., Ann, K., Chin, C. T., Kreber, R., Ganetzky, B., Martin, T. F., Broadie, K. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron. 31, 421-437 (2001).
  40. Rohrbough, J., Broadie, K. Electrophysiological Analysis of Synaptic Transmission in Central Neurons of Drosophila Larvae. J. Neurophysiol. 88, 847-860 (2002).
  41. Rohrbough, J., Rushton, E., Palanker, L., Woodruff, E., Matthies, H. J., Acharya, U., Acharya, J. K., Broadie, K. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789-7803 (2004).
  42. Rohrbough, J., Rushton, E., Woodruff, E. 3. r. d., Fergestad, T., Vigneswaran, K., Broadie, K. Presynaptic establishment of the synaptic cleft extracellular matrix is required for postsynaptic differentiation. Genes Dev. 21, 2607-2628 (2007).
  43. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J., Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol.. A175, 179-191 (1994).
  44. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 14, 341-351 (1995).
  45. Tsunoda, S., Salkoff, L. Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. J. Neurosci. 15, 1741-1754 (1995).
  46. Ueda, A., Kidokoro, Y. Longitudinal body wall muscles are electrically coupled across the segmental boundary in the third instar larva of Drosophila melanogaster. Invertebrate Neuroscience. 1, 315-322 (1996).
  47. Wu, C. F., Haugland, F. N. Voltage clamp analysis of membrane currents in larval muscle fibers of Drosophila. J. Neurosci. 5, 2626-2640 (1985).
  48. Yan, Y., Broadie, K. In vivo assay of presynaptic microtubule cytoskeleton dynamics in Drosophila. J Neurosci Methods. 162, 198-205 (2007).
  49. Yoshikami, D., Okun, L. Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature. 310, 53-56 (1984).
  50. Zagotta, W. N., Brainard, M. S., Aldrich, R. W. Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle. J. Neurosci. 8, 4765-4779 (1988).
  51. Zhang, Y. Q., Rodesch, C. K., Broadie, K. A living synaptic vesicle marker: synaptotagmin-GFP.. Genesis. 34, 142-145 (2002).
check_url/pt/1348?article_type=t

Play Video

Citar este artigo
Chen, K., Featherstone, D. E., Broadie, K. Electrophysiological Recording in the Drosophila Embryo. J. Vis. Exp. (27), e1348, doi:10.3791/1348 (2009).

View Video