Summary

Enregistrement électrophysiologique dans le Drosophile Embryon

Published: May 21, 2009
doi:

Summary

Enregistrements électrophysiologiques de<em> Drosophile</em> Embryons permettent des analyses des muscles en développement et les propriétés électriques des neurones, ainsi que la caractérisation fonctionnelle de la synaptogenèse à la jonction neuromusculaire et glutamatergique cholinergiques centraux et les synapses GABAergiques.

Abstract

Drosophile est un modèle de premier génétique pour l'étude du développement embryonnaire et à la fois fonctionnelles en neurosciences. Traditionnellement, ces champs sont assez isolées les unes des autres, avec des histoires largement indépendantes et les communautés scientifiques. Cependant, l'interface entre ces domaines généralement disparates sont les programmes de développement qui sous-tendent l'acquisition de propriétés fonctionnelles électriques de signalisation et de la différenciation des synapses chimiques fonctionnels pendant les phases finales de la formation des circuits neuronaux. Cette interface est une zone cruciale pour l'enquête. Chez la drosophile, ces phases de développement fonctionnel se produisent pendant une période de <8 heures (à 25 ° C) pendant le dernier tiers de l'embryogenèse. Cette période tardive de développement a été longtemps considérés comme insurmontables à cause enquête pour le dépôt d'un dur, la cuticule épidermique imperméable. Une percée a été l'avance de l'application de l'eau-de polymérisation de la colle chirurgicale qui peut être appliqué localement à la cuticule pour permettre une dissection contrôlée des embryons à un stade avancé. Avec une incision dorsale longitudinale, l'embryon peut être posé à plat, ce qui expose la corde nerveuse ventrale et la musculature paroi du corps d'une enquête expérimentale. Whole-cell patch-clamp techniques peuvent alors être employées pour enregistrer à partir de neurones individuellement identifiables et les muscles somatiques. Ces configurations d'enregistrement ont été utilisées pour suivre l'apparition et la maturation des courants ioniques et la propagation du potentiel d'action dans les deux neurones et les muscles. Mutants génétiques affectant ces propriétés électriques ont été caractérisées pour révéler la composition moléculaire des canaux ioniques et complexes de signalisation associés, et pour commencer l'exploration des mécanismes moléculaires de la différenciation fonctionnelle. Un accent particulier a été le montage de connexions synaptiques, à la fois dans le système nerveux central et la périphérie. Le glutamatergique jonction neuromusculaire (JNM) est plus accessible à une combinaison de l'imagerie optique et l'enregistrement électrophysiologiques. Une électrode d'aspiration de verre est utilisé pour stimuler le nerf périphérique, avec excitateur de jonction actuelle (EJC) des enregistrements réalisés dans la tension musculaire serré. Cette configuration de l'enregistrement a été utilisé pour tracer la différenciation fonctionnelle de la synapse, et de suivre l'apparition et la maturation des présynaptique propriétés de libération du glutamate. En outre, les propriétés postsynaptique peut être dosée de façon indépendante par l'intermédiaire d'iontophorèse ou l'application de pression de glutamate directement à la surface du muscle, de mesurer l'apparition et la maturation des champs récepteurs du glutamate. Ainsi, les deux éléments de pré-et post-synaptiques peuvent être suivis séparément ou en combinaison au cours synaptogenèse embryonnaire. Ce système a été largement utilisé pour isoler et caractériser des mutants génétiques qui altèrent la formation des synapses embryonnaire, et révéler ainsi les mécanismes moléculaires qui régissent la spécification et la différenciation des connexions synaptiques fonctionnelles synapse et propriétés de signalisation.

Protocol

Partie 1: matériel et fournitures L'enregistrement à partir d'embryons de drosophile électrophysiologique nécessite d'abord la maîtrise des techniques de dissection embryonnaires, qui sont décrites dans une autre vidéo Jupiter. L'enregistrement à partir d'embryons de drosophile électrophysiologique utilise les configurations standard d'enregistrement patch-clamp. Matériel d'enregistrement patch clamp et un logiciel adapté à de nombreuses autr…

Discussion

L'enregistrement à partir d'embryons de drosophile électrophysiologique nécessite une manipulation manuelle et de dissection. La santé de la préparation, et la qualité conséquente des enregistrements, dépend d'un seul être capable de préparer rapidement et proprement les tissus fragiles embryonnaires à des fins d'enregistrement, et ensuite exécuter l'expérience. Les expérimentateurs doivent être compétents dans les deux dissections embryonnaire et l'électrophysiologie pa…

Declarações

The authors have nothing to disclose.

Acknowledgements

KB est soutenu par NIH GM54544.

Referências

  1. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K., Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965-971 (1999).
  2. Auld, V. J., Fetter, R. D., Broadie, K., Goodman, C. S. Gliotactin a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell. 81, 757-767 (1995).
  3. Baines, R. A., Bate, M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18, 4673-4683 (1998).
  4. Baines, R. A., Robinson, S. G., Fujioka, M., Jaynes, J. B., Bate, M. Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila. Curr. Biol. 9, 1267-1270 (1999).
  5. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523-1531 (2001).
  6. Bate, M. The embryonic development of the larval muscles in Drosophila. Development. 110, 791-804 (1990).
  7. Bate, M., Martinez Arias, A., Bate, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , (1993).
  8. Baumgartner, S., JT, L. i. t. t. l. e. t. o. n., Broadie, K., MA, B. h. a. t., Harbecke, R., JA, L. e. n. g. y. e. l., Chiquet-Ehrismann, R., Prokop, A., Bellen, H. J. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell. 87, 1059-1068 (1996).
  9. AH, B. r. a. n. d. Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401-415 (1993).
  10. Brand, A. GFP as a cell and developmental marker in the Drosophila nervous system. Methods Cell Biol. 58, 165-181 (1999).
  11. Broadie, K., Sullivan, W., Ashburner, M., Hawley, R. S. Electrophysiological Approaches to the Neuromusculature. Drosophila Protocols. , 273-296 (2000).
  12. Broadie, K., Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci. 13, 144-166 (1993a).
  13. Broadie, K., Bate, M. Development of larval muscle properties in the embryonic myotubes of Drosophila melanogaster. J. Neurosci. 13, 167-180 (1993b).
  14. Broadie, K., Bate, M. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis. Neuron. 11, 607-619 (1993c).
  15. Broadie, K., Bate, M. Synaptogenesis in the Drosophila embryo: innervation directs receptor synthesis and localization. Nature. 361, 350-353 (1993d).
  16. Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T., Schwarz, T. L. The absence of Synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl. Acad. Sci. USA. 91, 10727-10731 (1994).
  17. Broadie, K., Prokop, A., Bellen, H. J., O’Kane, C. J., Schulze, K. L., Sweeney, S. T. Syntaxin and Synaptobrevin function downstream of vesicle docking in Drosophila. Neuron. 15, 663-673 (1995).
  18. Broadie, K., Rushton, E., Skoulakis, E. C. M., Davis, R. L. e. o. n. a. r. d. o. a 14-3-3 protein involved in learning, regulates presynaptic function. Neuron. 19, 391-402 (1997).
  19. Broadie, K., Skaer, H., Bate, M. Whole-embryo culture of Drosophila: development of embryonic tissues in vitro. Roux’s Arch. Develop. Biol. 201, 364-375 (1992).
  20. Campos-Ortega, J., Hartenstein, V. . The embryonic development of Drosophila melanogaster. , (1985).
  21. Deitcher, D. L., Ueda, A., Stewart, B. A., Burgess, R. W., Kidokoro, Y., Schwartz, T. L. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18, 2028-2039 (1998).
  22. Featherstone, D. E., Broadie, K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res. Bull. 53, 501-511 (2000).
  23. Featherstone, D. E., Rushton, E. M., Hilderbrand-Chae, M., Phillips, A. M., Jackson, F. R., Broadie, K. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron. 27, 71-84 (2000).
  24. Featherstone, D. E., Davis, W. S., Dubreuil, R. R., Broadie, K. Drosophila alpha- and beta-spectrin mutations disrupt presynaptic neurotransmitter release. J Neurosci. 21, 4215-4224 (2001).
  25. Featherstone, D. E., Rushton, E., Broadie, K. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release. Nat Neurosci. 5, 141-146 (2002).
  26. Featherstone, D. E., Rushton, E., Rohrbough, J., Liebl, F., Karr, J., Sheng, Q., Rodesch, C. K., Broadie, K. An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J. Neurosci. 25, 3199-3208 (2005).
  27. Fergestad, T., Davis, W. S., Broadie, K. The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J Neurosci. 19, 5847-5860 (1999).
  28. Fergestad, T., Wu, M. N., Schulze, K. L., Lloyd, T. E., Bellen, H. J., Broadie, K. Targeted mutations in the syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission. J Neurosci. 21, 9142-9150 (2001).
  29. Fergestad, T., Broadie, K. Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci. 21, 1218-1227 (2001).
  30. Goodman, C. S., Doe, C. Q., Bate, M., Martinez Arias, A. Embryonic Development of the Drosophila Central Nervous System. In The Development of Drosophila melanogaster. , 1131-1206 (1993).
  31. Harrison, S. D., Broadie, K., Goor, J. v. a. n. d. e., Rubin, G. M. Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron. 13, 555-566 (1994).
  32. Huang, F. D., Woodruff, E., Mohrmann, R., Broadie, K. Rolling blackout is required for synaptic vesicle exocytosis. J. Neurosci. 26, 2369-2379 (2006).
  33. Jan, L. Y., Jan, Y. N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. 262, 189-214 (1976).
  34. Jan, L. Y., Jan, Y. N. L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J. Physiol. 262, 215-236 (1976b).
  35. Kidokoro, Y., Nishikawa, K. I. Miniature endplate currents at the newly formed neuromuscular junction in Drosophila embryos and larvae. Neuroscience Research. 19, 143-154 (1994).
  36. Landgraf, M., Bossing, T., Technau, G. M., Bate, M. The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642-9655 (1997).
  37. Mohrmann, R., Matthies, H. J., Woodruff III, E., Broadie, K. Stoned B mediates sorting of integral synaptic vesicle proteins. Neurociência. 153, 1048-1063 (2008).
  38. Nishikawa, K. I., Kidokoro, Y. Junctional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J. Neurosci. 15, 7905-7915 (1995).
  39. Renden, R., Berwin, B., Davis, W., Ann, K., Chin, C. T., Kreber, R., Ganetzky, B., Martin, T. F., Broadie, K. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron. 31, 421-437 (2001).
  40. Rohrbough, J., Broadie, K. Electrophysiological Analysis of Synaptic Transmission in Central Neurons of Drosophila Larvae. J. Neurophysiol. 88, 847-860 (2002).
  41. Rohrbough, J., Rushton, E., Palanker, L., Woodruff, E., Matthies, H. J., Acharya, U., Acharya, J. K., Broadie, K. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789-7803 (2004).
  42. Rohrbough, J., Rushton, E., Woodruff, E. 3. r. d., Fergestad, T., Vigneswaran, K., Broadie, K. Presynaptic establishment of the synaptic cleft extracellular matrix is required for postsynaptic differentiation. Genes Dev. 21, 2607-2628 (2007).
  43. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J., Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol.. A175, 179-191 (1994).
  44. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 14, 341-351 (1995).
  45. Tsunoda, S., Salkoff, L. Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. J. Neurosci. 15, 1741-1754 (1995).
  46. Ueda, A., Kidokoro, Y. Longitudinal body wall muscles are electrically coupled across the segmental boundary in the third instar larva of Drosophila melanogaster. Invertebrate Neuroscience. 1, 315-322 (1996).
  47. Wu, C. F., Haugland, F. N. Voltage clamp analysis of membrane currents in larval muscle fibers of Drosophila. J. Neurosci. 5, 2626-2640 (1985).
  48. Yan, Y., Broadie, K. In vivo assay of presynaptic microtubule cytoskeleton dynamics in Drosophila. J Neurosci Methods. 162, 198-205 (2007).
  49. Yoshikami, D., Okun, L. Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature. 310, 53-56 (1984).
  50. Zagotta, W. N., Brainard, M. S., Aldrich, R. W. Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle. J. Neurosci. 8, 4765-4779 (1988).
  51. Zhang, Y. Q., Rodesch, C. K., Broadie, K. A living synaptic vesicle marker: synaptotagmin-GFP.. Genesis. 34, 142-145 (2002).
check_url/pt/1348?article_type=t

Play Video

Citar este artigo
Chen, K., Featherstone, D. E., Broadie, K. Electrophysiological Recording in the Drosophila Embryo. J. Vis. Exp. (27), e1348, doi:10.3791/1348 (2009).

View Video