Summary

在Live主机转利什曼原虫寄生虫在体内成像

Published: July 27, 2010
doi:

Summary

一个<em>在体内</em>成像系统是用来生成的定量测量与Trypanosomatid原虫感染小鼠<em>利什曼原虫</em>。这是一个慢性的过程中整个检测在许多组织中表达的荧光素酶的寄生虫的非侵入性和非致命性的方法<em>利什曼原虫</em> SPP。感染。

Abstract

独特品种<em>利什曼原虫,</em>一个家庭的原生动物寄生虫<em> Trypanosomatidae</em>,通常会导致不同的人类疾病的表现。疾病最常见的形式是内脏利什曼病(VL)和皮肤利什曼病(CL)。利什曼病的小鼠模型被广泛使用,但在小鼠疾病的寄生虫负担的量化要求的小鼠在感染后的不同时间安乐死。寄生负载,然后在显微镜下测量,限制稀释实验中,或寄生虫的DNA定量PCR扩增。 “<em>在体内</em>成像系统(IVIS)有一个集成的软件包,使细胞在生物体相关的发光信号的检测。既可以减少动物的使用和纵向遵循感染在体内成像模型在个人,<em>利什曼原虫</em> SPP。造成VL或CL成立。寄生虫设计,以表达荧光素酶,这些被引入到小鼠皮下或静脉注射。转基因荧光素酶驾驶的生物发光的定量测量<em>利什曼原虫</em使用IVIS>鼠标内的寄生虫。个人小鼠可成像多次在纵向研究中,让我们评估在最初的实验寄生虫接种的动物间的变化,并评估在小鼠组织中的寄生虫的繁殖。寄生虫检测灵敏度高,与皮肤的位置。虽然这是极有可能的信号(光子/秒/寄生虫)是在更深的内脏器官比皮肤低,但信号的定量比较肤浅与深刻的网站还没有完成。这是可能的部位的寄生虫之间的数字不能直接比较,但可以在同一组织中的寄生虫负载之间的小鼠相比。一个visceralizing物种的例子(<em> L。 infantum chagasi</em>)和一个物种造成皮肤利什曼病(<em> L。墨西哥</em>)所示。 IVIS程序可用于监测和分析各种各样的小动物模型<em>利什曼原虫</em>物种造成人类利什曼病的不同形式。

Protocol

1。小动物转基因利什曼原虫感染 1。寄生虫线转基因利什曼原虫 SPP。寄生虫表达荧光素酶的生成使用episomal或作为一个整合载体。1 2克隆线是首选。两个要点是: (一)综合超过episomal荧光素酶的荧光素酶是首选,因为这些寄生虫线,在理论上应该更好地保留在药物的压力,即没有引入到哺乳动物的基因。然而,?…

Discussion

在活体成像系统(IVIS),为整个动物的成像或体内成像实验感染利什曼病的不同形式的模型 方法。18,16利什曼原虫SPP。寄生虫,可设计,以表达萤火虫荧光素酶在体内 IVIS成像技术检测的水平。这种方法的主要优势之一是它允许利什曼原虫属非侵入性可视化。活的动物宿主内。该方法已应用于其他传染性疾病模型,传染性病原体可以表达的转基因?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是从退伍军人事务部的优异审查授予部分经费,由美国国立卫生研究院拨款AI045540,AI067874,AI076233 – 01和AI080801(水电部),和AI29646(SMB)。这项工作是在CT和JG的经费由美国国立卫生研究院的T32 AI07511部分。

Materials

Material Name Tipo Company Catalogue Number Comment
D-Luciferin Potassium Salt Reagent Caliper LifeSciences (Formerly Xenogen) 122796  
IVIS Imaging System 200 Series Equipment Caliper LifeSciences   Other IVIS models that can be used include: Lumina II, Lumina XR, Kinetic, and Spectrum.

Referências

  1. Capul, A. A., Barron, T., Dobson, D. E., Turco, S. J., Beverley, S. M. Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major. J Biol Chem. 282, 14006-14017 (2007).
  2. LeBowitz, J. H., Coburn, C. M., McMahon-Pratt, D., Beverley, S. M. Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc Natl Acad Sci U S A. 87, 9736-9740 (1990).
  3. Mureev, S., Kushnir, S., Kolesnikov, A. A., Breitling, R., Alexandrov, K. Construction and analysis of Leishmania tarentolae transgenic strains free of selection markers. Mol Biochem Parasitol. 155, 71-83 (2007).
  4. Chakkalath, H. R. Priming of a beta-galactosidase (beta-GAL)-specific type 1 response in BALB/c mice infected with beta-GAL-transfected Leishmania major. Infect Immun. 68, 809-814 (2000).
  5. Sacks, D. L., Perkins, P. V. Identification of an infective stage of Leishmania promastigotes. Science. 223, 1417-1419 (1984).
  6. da Silva, R., Sacks, D. L. Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun. 55, 2802-2806 (1987).
  7. Spath, G. F., Beverley, S. M. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol. 99, 97-103 (2001).
  8. Scott, P., Caspar, P., Sher, A. Protection against Leishmania major in BALB/c mice by adoptive transfer of a T cell clone recognizing a low molecular weight antigen released by promastigotes. J Immunol. 144, 1075-1079 (1990).
  9. Belkaid, Y. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med. 194, 1497-1506 (2001).
  10. Wilson, M. E. Local suppression of IFN-gamma in hepatic granulomas correlates with tissue-specific replication of Leishmania chagasi. J Immunol. 156, 2231-2239 (1996).
  11. McElrath, M. J., Murray, H. W., Cohn, Z. A. The dynamics of granuloma formation in experimental visceral leishmaniasis. J Exp Med. 167, 1927-1937 (1988).
  12. Ato, M. Loss of dendritic cell migration and impaired resistance to Leishmania donovani infection in mice deficient in CCL19 and CCL21. J Immunol. 176, 5486-5493 (2006).
  13. Ahmed, S. Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun. 71, 401-410 (2003).
  14. Kamala, T. Hock immunization: a humane alternative to mouse footpad injections. J Immunol Methods. 328, 204-214 (2007).
  15. Lang, T., Goyard, S., Lebastard, M., Milon, G. Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol. 7, 383-392 (2005).
  16. Brittingham, A., Miller, M. A., Donelson, J. E., Wilson, M. E. Regulation of GP63 mRNA stability in promastigotes of virulent and attenuated Leishmania chagasi. Mol Biochem Parasitol. 112, 51-59 (2001).
  17. Roy, G. Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol. 110, 195-206 (2000).
  18. Contag, C. H. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol. 18, 593-603 (1995).
  19. Hardy, J., Margolis, J. J., Contag, C. H. Induced Biliary Excretion of Listeria monocytogenes. Infect. Immun. 74, 1819-1827 (2006).
  20. Lecoeur, H. Optimization of Topical Therapy for Leishmania major Localized Cutaneous Leishmaniasis Using a Reliable C57BL/6 Model. PLoS Negl Trop Dis. 1, e34-e34 (2007).
  21. Lang, T., Lecoeur, H., Prina, E. Imaging Leishmania development in their host cells. Trends Parasitol. 25, 464-473 (2009).
check_url/pt/1980?article_type=t

Play Video

Citar este artigo
Thalhofer, C. J., Graff, J. W., Love-Homan, L., Hickerson, S. M., Craft, N., Beverley, S. M., Wilson, M. E. In vivo Imaging of Transgenic Leishmania Parasites in a Live Host. J. Vis. Exp. (41), e1980, doi:10.3791/1980 (2010).

View Video