Summary

Patch Clamp Recordings from Mouse Retinal Neurons in a Dark-adapted Slice Preparation

Published: September 12, 2010
doi:

Summary

Here we describe a procedure for generating dark-adapted slices of the mouse retina for electrophysiological recordings.

Abstract

Our visual experience is initiated when the visual pigment in our retinal photoreceptors absorbs photons of light energy and initiates a cascade of intracellular events that lead to closure of cyclic-nucleotide-gated channels in the cell membrane. The resulting change in membrane potential leads in turn to reductions in the amount of neurotransmitter release from both rod and cone synaptic terminals. To measure how the light-evoked change in photoreceptor membrane potential leads to downstream activity in the retina, scientists have made electrophysiological recordings from retinal slice preparations for decades1,2. In the past these slices have been cut manually with a razor blade on retinal tissue that is attached to filter paper; in recent years another method of slicing has been developed whereby retinal tissue is embedded in low gelling temperature agar and sliced in cool solution with a vibrating microtome3,4. This preparation produces retinal slices with less surface damage and very robust light-evoked responses. Here we document how this procedure can be done under infrared light to avoid bleaching the visual pigment.

Protocol

1. Preparing Electrodes Prepare the recording and reference electrodes by dipping them both in 1M NaCl and driving 15V between them using a 1 Hz sine wave for ~ 20 s. Make the recording electrodes using a micropipette puller (Sutter Instruments P-97). For patch-pipettes use a borosilicate glass with an outer diameter of 1.2 mm and an inner diameter of 0.69 mm (Sutter Instruments, Cat#B120-69-10). Measure the series resistance through the tip of the electrode. Based on the size of the target …

Discussion

Slice recording from vertebrate retinas have been made for decades1,2, and have been quite successful in providing a deeper understanding of how the retinal circuitry encodes incident light. The advantages of cutting with a vibrating microtome rather than directly with a razor blade is that the retinal slices incur less damage at the surface. With a suction pipette it is easy to remove this damage and target healthy cells just below the surface that retain their connectivity in the retinal circuit, where mos…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH Grant EY17606 (APS).

Materials

Material Name Type Company Catalogue Number Comment
Micropipette Puller   Sutter Instruments P-97  
Borosilicate glass   Sutter Instruments B120-69-10  
Polyethylene tubing   Intramedic PE205  
Agar   Sigma A7002  
Low gelling temp agarose   Sigma A0701  
Ames’ Medium   Sigma A1420  
Penicillin-Streptomycin   Sigma P0781  

References

  1. Weblin, F. Transmission along and between rods in the tiger salamander retina. J Physiol. 280, 449-470 (1978).
  2. Wu, S. M. Synaptic connections among retina neurons in living slices. J Neurosci Methods. 20, 139-149 (1987).
  3. Rieke, F. Temporal contrast adaptation in salamander bipolar cell. J Neurosci. 21, 9445-9454 (2001).
  4. Armstrong-Gold, C., &amp, R. i. e. k. e., F, . Bandpass filtering at the rod to second-order cell synapse in salamander (Ambystoma tigrinum) retina. J Neurosci. 23, 3796-3806 (2003).
  5. Masland, R. H. The fundamental plan of the retina. Nat Neurosci. 4, 877-886 (2001).
  6. Wassle, H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 5, 747-757 (2004).
check_url/2107?article_type=t

Play Video

Cite This Article
Arman, A. C., Sampath, A. P. Patch Clamp Recordings from Mouse Retinal Neurons in a Dark-adapted Slice Preparation. J. Vis. Exp. (43), e2107, doi:10.3791/2107 (2010).

View Video