Summary

Тестирование Protozoacidal активность лиганд-литических пептиды против термитов Gut Protozoa В пробирке (Protozoa культуры) и В естественных условиях (Микроинъекция в Термит кишке)

Published: December 29, 2010
doi:

Summary

Мы существующему порядку демонстрации того, что лиганды связываются с поверхностью мембраны целлюлозы переваривания простейших в кишечнике Формозы подземных термитов помощью флуоресцентной микроскопии и лигандов, что в сочетании с литических пептидов убивать этих простейших<em> В пробирке</em> (Анаэробных простейших культуры) и<em> В естественных условиях</em> (Инъекции в кишке термитов).

Abstract

We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004).

In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,
Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic peptide efficiently kills termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into hindgut of workers), but is less bacteriacidal than the lytic peptide alone. The loss of protozoa leads to the death of the termites in less than two weeks.

In the future, we will genetically engineer microorganisms that can survive in the termite hindgut and spread through a termite colony as “Trojan Horses” to express ligand-lytic peptides that would kill the protozoa in the termite gut and subsequently kill the termites in the colony. Ligand-lytic peptides also could be useful for drug development against protozoan parasites.

Protocol

Эксперимент 1: Добыча термитов кишечнике простейших в анаэробных условиях Используйте блок вентилятора (Кой Laboratories) в перчаточном ящике постоянно циркулировать воздух через осушитель и тип D катализатором Stak-Пакш для контроля влажности и кислорода и устранения неравномерности ?…

Discussion

Лиганд-литических пептидов, которые были успешно использованы для эффективного прицельное действие способствует разрушению раковых клеток (Гензель и Лейшнер 2004, Гензель и соавт. 2007). Основываясь на этой концепции, мы разработали гептапептида лиганд, который связывается с поверхн…

Declarações

The authors have nothing to disclose.

Acknowledgements

Мы благодарим доктор Элисон Ричард, бывший директор объекта ЛГУ пептид для флуоресцентной синтез лиганда, Interdisciplinaray Центра биотехнологических исследований, UF для лиганд-литического синтеза пептидов, а объект Socolovsky микроскоп для обеспечения доступа к флуоресцентных микроскопов. Финансирование было предоставлено развития SERDP поисковые программы (SEED) из Министерства обороны, Министерства энергетики и охране окружающей среды, биотехнологии AgCenter Междисциплинарная команда программы и штата Луизиана.

Materials

Material Name Tipo Company Catalogue Number Comment
Sigmacote   Sigma Aldrich SL-2  
EDANS   Novabiochem    
Anaerobic glove box   Coy Laboratories, Inc. Custom made  
Intellus environmental controller   Percival I36NL  
PC-10 Glass micropipette puller   Narishige Scientific Instrument Lab PC-10  
Glass needles (Model GD-1, 1 X 900 mm)   Narishige Scientific Instrument Lab GD-1  
Leitz micromanipulators   Vermont Optechs, Inc. ACS01  
Microinjector   Tritech Research, Inc. MINJ-1  
Microcaps   Drummond Scientific Company 1-000-0005  
LEICA fluorescence imaging system   Leica DMRxA2  
LEICA dissecting scope   Leica MZ16  
LEICA microscope   Leica DMLB  
Olympus dissecting scope   Olympus SZ61  

Referências

  1. Hansel, W., Leuschner, C., Enright, F. Conjugates of lytic peptides and LHRH or βCG target and cause necrosis of prostate cancers and metastases. Mol. Cell. Endocrinol. 269, 26-33 (2007).
  2. Husseneder, C., Collier, R. E., Bourtzis, K., Miller, T. A. Paratransgenesis for termite control. Insect Symbiosis. 3, 361-376 (2009).
  3. Husseneder, C., Grace, J. K., Oishi, D. E. Use of genetically engineered bacteria (Escherichia coli) to monitor ingestion, loss and transfer of bacteria in termites. Curr. Microbiol. 50, 119-123 (2005).
  4. Husseneder, C., Grace, J. K. Genetically engineered termite gut bacteria deliver and spread foreign genes in termite colonies. Appl. Microbiol. Biotechnol. 68, 360-367 (2005).
  5. Javadpour, M. M., Juban, M. M., Lo, W. C., Bishop, S. M., Alberty, J. B., Cowell, S. M., Becker, C. L., Mc Laughlin, M. L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem. 39, 3107-3113 (1996).
  6. Lai, P. Y., Tamashiro, M., Fuji, J. K. Abundance and distribution of the three species of symbiotic protozoa in the hindgut of Coptotermes formosanus (Isoptera). Proc. Haw. Entomol. Soc. 24, 271-276 (1983).
  7. Leuschner, C., Hansel, W. Membrane disrupting lytic peptides for cancer treatments. Curr. Pharm. Des. 10, 2299-2310 (2004).
  8. Mutwiri, G. K., Henk, W. G., Enright, F. M., Corbeil, L. B. Effect of the Antimicrobial Peptide, d-Hecate, on Trichomonads. J. Parasitol. 86, 1355-1359 (2000).
  9. Trager, W. The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol. Bull. 66, 182-190 (1934).
check_url/pt/2190?article_type=t

Play Video

Citar este artigo
Husseneder, C., Sethi, A., Foil, L., Delatte, J. Testing Protozoacidal Activity of Ligand-lytic Peptides Against Termite Gut Protozoa in vitro (Protozoa Culture) and in vivo (Microinjection into Termite Hindgut). J. Vis. Exp. (46), e2190, doi:10.3791/2190 (2010).

View Video