Summary

Yeast Colony Embedding Method

Published: March 22, 2011
doi:

Summary

A method for embedding yeast colonies allowing sectioning for light and electron microscopy. This protocol allows determination of the distribution of sporulated cells and pseudohyphal cells within colonies providing a new tool toward understanding the organization of cell types within a fungal community.

Abstract

Patterning of different cell types in embryos is a key mechanism in metazoan development. Communities of microorganisms, such as colonies and biofilms also display patterns of cell types. For example, in the yeast S. cerevisiae, sporulated cells and pseudohyphal cells are not uniformly distributed in colonies. The functional importance of patterning and the molecular mechanisms that underlie these patterns are still poorly understood.

One challenge with respect to investigating patterns of cell types in fungal colonies is that unlike metazoan tissue, cells in colonies are relatively weakly attached to one another. In particular, fungal colonies do not contain the same extensive level of extracellular matrix found in most tissues . Here we report on a method for embedding and sectioning yeast colonies that reveals the interior patterns of cell types in these colonies. The method can be used to prepare thick sections (0.5 μ) useful for light microscopy and thin sections (0.1 μ) suitable for transmission electron microscopy. Asci and pseudohyphal cells can easily be distinguished from ovoid yeast cells by light microscopy , while the interior structure of these cells can be visualized by EM.

The method is based on surrounding colonies with agar, infiltrating them with Spurr’s medium, and then sectioning. Colonies with a diameter in the range of 1-2 mm are suitable for this protocol. In addition to visualizing the interior of colonies, the method allows visualization of the region of the colony that invades the underlying agar.

Protocol

1. Colony Isolation and Fixation Incubate 300 colonies on agar medium for the indicated time (an isolated colony should be 1-2 mm in diameter). Remove colony (face up) and underlying medium using a narrow spatula. Place several drops of 2% agar 42°C on a microscope slide using 1 mL pipetman tip and immediately place colony on agar face up before it solidifies. Place several drops of 2% agar 42°C on colony and allow to solidify. Wear gloves for all steps through th…

Discussion

The method presented reveals the interior structures of colonies. Because the method is effective in determining patterns of cell types in a range of S. cerevisiae strains with different colony morphologies, and also in a related species S. paradoxus 5, the method is also likely to work on a wide range of fungi and other microorganisms.

One critical step for the success of the method is to ensure that the entire colony, including the top of the colony, is encased in agar …

Declarações

The authors have nothing to disclose.

Acknowledgements

Research was funded by NIH 1R15GM094770.

Materials

Material Name Tipo Company Catalogue Number Comment
Osmium tetroxide   Electron Microscopy Sciences RT 19152  
Silicone embedding molds   Fisher Scientific NC 9975029  
Cycloaliphatic epoxide resin   Electron Microscopy Sciences RT 15004 ERL 4221
Epoxy resin   Electron Microscopy Sciences RT 13000 DER 736
Nonenyl Succinic Anhydride   Electron Microscopy Sciences RT 19050 NSA
2-Dimethyl aminoethanol   Electron Microscopy Sciences RT 13300 DMAE
Mounting media   KPL 71-00-16  
Rotating wheel   Ted Pella Pelco 1055  
Microtome   Leica Ultracut S  

Referências

  1. Kimmel, A. R., Firtel, R. A. Breaking symmetries: regulation of Dictyostelium development through chemoattractant and morphogen signal-response. Curr Opin Genet Dev. 14, 540-540 (2004).
  2. Palkova, Z., Vachova, L. Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev. 30, 806-806 (2006).
  3. Shapiro, J., Vachova, L. The significances of bacterial colony patterns. Bioessays. 17, 597-597 (1995).
  4. Shapiro, J., Vachova, L. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol. 52, 81-81 (1998).
  5. Engelberg, D. Multicellular stalk-like structures in Saccharomyces cerevisiae. J Bacteriol. 180, 3992-3992 (1998).
  6. Scherz, R., Shinder, V., Engelberg, D. Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol. 183, 5402-5402 (2001).
  7. Piccirillo, S. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies. Genética. 184, 707-707 (2010).
  8. Sniegowski, P. D., Dombrowski, P. G., Fingerman, E. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res. 1, 299-299 (2002).
  9. Piccirillo, S., Honigberg, S. M. Sporulation patterning and invasive growth in wild and domesticated yeast colonies. Res Microbiol. 161, 390-390 (2002).
  10. Vachova, L. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol. , (2009).
check_url/pt/2510?article_type=t

Play Video

Citar este artigo
Piccirillo, S., Honigberg, S. M. Yeast Colony Embedding Method. J. Vis. Exp. (49), e2510, doi:10.3791/2510 (2011).

View Video