Summary

Dissection of a Mouse Eye for a Whole Mount of the Retinal Pigment Epithelium

Published: February 27, 2011
doi:

Summary

A formal demonstration of the dissection of a mouse eye, resulting in a whole mount of the retinal pigment epithelium.

Abstract

The retinal pigment epithelium (RPE) lies at the back of the mammalian eye, just under the neural retina, which contains the photoreceptors (rods and cones). The RPE is a monolayer of pigmented cuboidal cells and associates closely with the neural retina just above it. This association makes the RPE of great interest to researchers studying retinal diseases. The RPE is also the site of an in vivo assay of homology-directed DNA repair, the pun assay. The mouse eye is particularly difficult to dissect due to its small size (about 3.5mm in diameter) and its spherical shape. This article demonstrates in detail a procedure for dissection of the eye resulting in a whole mount of the RPE. In this procedure, we show how to work with, rather than against, the spherical structure of the eye. Briefly, the connective tissue, muscle, and optic nerve are removed from the back of the eye. Then, the cornea and lens are removed. Next, strategic cuts are made that result in significant flattening of the remaining tissue. Finally, the neural retina is gently lifted off, revealing an intact RPE, which is still attached to the underlying choroid and sclera. This whole mount can be used to perform the pun assay or for immunohistochemistry or immunofluorescent assessment of the RPE tissue.

Protocol

1. Remove Extraneous tissue from the outside of the eye Pour 1X PBS into the lid of a 35mm dish. The level should be just below the lip of the lid. Using straight forceps, transfer eye(s) from the storage tube to the 35mm dish. Eyes are submerged in PBS for two reasons: 1. The extraneous tissues will “float” away from the eye so you can see and remove them easily, and 2. During dissection, the eye will naturally maintain its spherical shape while in suspension, allowing you to work with this shape …

Discussion

The RPE is the site of the pun assay, an in vivo assay of homology-directed repair. The pun assay has been used to study the effects of different DNA damages1,2 and DNA damage signaling and repair genes3,4,5 on the frequency of homology-directed repair. This assay is highly sensitive, detecting single-cell events on the RPE1 . It can also detect differences in the timing of homology-directed repair events during development6. The…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by the National Institute of Environmental Health Sciences [K22ES012264 to A.J.R.B.] and an American Cancer Society InstitutionalResearch Grant [ACS-IRG-00-173-04]pilot projectaward [to A.J.R.B.]. We also thank members of the Bishop lab for critical reading of the manuscript and comments on the video and Adam Brown in particular, for the example of what not to do. We thank Dr. Donald McEwen of Greehey Children’s Cancer Research Institute for allowing us the use of his dissecting scope/ video camera set-up for filming of the dissection video. We thank Daron Brown at Corte Instruments for sharpening and repair of our microdissection tools.

Materials

Material Name Tipo Company Catalogue Number Comment
straight forceps   Roboz RS-4903 tip: .08 x .04 mm material: INOX
45° forceps   Roboz RS-5005 tip: .05 x.01 mm material: INOX
15° “up” forceps   Roboz RS-5045A tip: .1 x.06 mm material: INOX
spring scissors   Roboz RS-5604 comb. tip width 0.3mm cutting edge length 3mm material: stainless steel
binocular dissecting microscope   Ziess Discovery V.8 use reflected light source
phalloidin   Invitrogen A22283 Alexa Fluor 546

Referências

  1. Bishop, A. J., Kosaras, B., Sidman, R. L., Scheistl, R. H. Benzo(a)pyrene andX-rays induce reversions of the pink-eyed unstable mutation in the retinal pigmentepithelium of mice. Mutat. Res.. 457, 31-31 (2000).
  2. Reliene, R. H. l. a. v. a. c. o. v. e., Mahadevan, A., Baird, B., M, W., Schiestl, R. H. Diesel exhaust particles cause increased levels of DNA deletions after transplacental exposure in mice. Mutat. Res. 570, 245-2452 (2005).
  3. Bishop, A. J., Barlow, C., Wynshaw-Boris, A. J., Scheistl, R. H. Atm deficiency causes increased frequency of intrachromosomal homologous recombination in mice. Cancer Res. 60, 395-399 (2000).
  4. Brown, A. D., Claybon, A. B., Bishop, A. J. Mouse WRN helicase domain is not required for spontaneous homologous recombination-mediated DNA deletion. J. Nucleic Acids. , (2010).
  5. Claybon, A., Karia, B., Bruce, C., Bishop, A. J. PARP1 suppresses homologous recombination events in mice in vivo. Nucleic Acids Res. , (2010).
  6. Bishop, A. J. p53-, and Gadd45a-deficient mice show an increased frequency ofhomologous recombination at different stages during development. Cancer Res. 63, 5335-5343 (2003).
  7. Bodenstein, L., Sidman, R. L. Growth and development of the mouse retinalpigment epithelium. Part I. Cell and tissue morphometrics and topography of mitoticactivity. Dev Biol. 121, 192-204 (1987).
  8. Burke, J. M. Epithelial phenotype and the RPE: is the answer blowing in the Wnt?. Prog Retin. Eye Res. 27, 579-595 (2008).
check_url/pt/2563?article_type=t

Play Video

Citar este artigo
Claybon, A., Bishop, A. J. R. Dissection of a Mouse Eye for a Whole Mount of the Retinal Pigment Epithelium. J. Vis. Exp. (48), e2563, doi:10.3791/2563 (2011).

View Video