Summary

慢病毒介导的击倒在体外红细胞

Published: July 16, 2011
doi:

Summary

一个<em>体外</em协议生成造血干/祖细胞的成熟的人体红细胞描述。此外,我们描述了一个高效的慢病毒传递方法击倒在主要的红系细胞的转录因子TAL1。使用绿色荧光蛋白表达病毒的慢病毒介导的基因传递的效率证明。

Abstract

红细胞是一种常用的模型系统研究细胞分化。在红细胞生成过程中,分化成多能干成人人体造血干细胞(HSCs)oligopotent的祖细胞,致力于前体成熟红细胞1。这个过程的调节,而随之而来的基因的表达,使特定的转录因子激活系特异性基因水平在很大程度上抑制基因的特定其他类型的细胞 2 。调节红细胞生成的转录因素的研究往往是使用人类和小鼠细胞系的代表,在一定程度上,在红系细胞分化3-5阶段进行。但是转化的细胞株只能部分模拟红系细胞和最重要的是,他们不会允许一个comprehensibly研究细胞的进展发生动态变化,通过对他们的最终红命运的许多阶段。因此,目前的挑战仍然是发展的一个协议,获得在不同分化阶段的数量足以执行基因组学和蛋白质组学实验小学的造血干细胞和红系细胞的相对同质的人群。

在这里,我们描述了红细胞分化诱导或者脐血,骨髓或成人外周血动员与G – CSF(leukapheresis)已经从孤立的从人体的造血干/祖细胞的体外细胞培养协议。这种文化系统,最初由Douay实验室6,使用间质细胞的细胞因子和共培养模拟骨髓微环境。使用这种体外分化协议,我们观察到强烈的红系祖细胞,分化,专门对诱导红系和一个完整的成熟的去核的红血细胞的阶段放大。因此,这个系统提供了一个机会,研究沿红系造血干细胞的进展转录调控的分子机制。

在转录水平的研究红细胞还需要在主要的红系细胞的过度表达或敲除特定因素的能力。为此,我们使用了慢病毒介导的基因传递系统,可以高效感染分裂和非分裂细胞7。在这里,我们表明,我们能够有效地击倒在基层的人类红系细胞的转录因子TAL1。此外,GFP的表达体现效率接近90%的慢病毒感染。因此,我们的协议提供了一个非常有用的系统控制红细胞生成的转录因子的调控网络的特征。

Protocol

Part I. ex vivo erythropoiesis of human hematopoietic stem/progenitor cells 1. Isolation of CD34+ human hematopoietic stem/progenitor cells Human CD34+ cell population, which contains a mixture of hematopoietic stem cells (HSCs) and early progenitors 8, is harvested from umbilical cord blood, peripheral blood mobilized with G-CSF (leukapheresis) or bone marrow (Figure 1-Step1). If using cord blood or peripheral blood, go direct…

Discussion

许多方法已被用于以前红系细胞分化在文化与不同程度的成功。例如,没有共同培养在MS – 5某些协议允许扩大红系细胞,但不是在完全成熟的去红细胞12-17高效。而其他方法允许高效率的眼球摘除,这是在牺牲扩散18,19。我们在这里使用,最初由Douay实验室6开发的方法,结合初始液体培养步骤,在红细胞分化的早期阶段,从而延长细胞扩增,从而为我们提供了大量早期祖…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢L. 体内红细胞分化,D.亚伦和H.阿特金斯(OHRI加拿大)的意见,提供血液样本(下渥太华医院研究伦理委员会获得Douay和MC Giarratana(巴黎第六大学,法国)# 2007804 – 01H),D. Trono(高等洛桑联邦理工学院)的慢病毒载体和FJ迪尔沃思(加拿大OHRI,)提供批判地阅读手稿。这个项目是由CIHR津贴(澳门币82813)资助到MBCGP是安大略省的研究基金计算Regulomics培训博士后奖学金获得者。 MB认为在基因表达调控的加拿大研究主席。

Referências

  1. Orkin, S. H., Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 132, 631-644 (2008).
  2. Kim, S. I., Bresnick, E. H. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene. 26, (2007).
  3. Friend, C., Patuleia, M. C., De Harven, E. Erythrocytic maturation in vitro of murine (Friend) virus-induced leukemic cells. Natl Cancer Inst Monogr. 22, 505-522 (1966).
  4. Weiss, M. J., Yu, C., Orkin, S. H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol. 17, 1642-1651 (1997).
  5. Lozzio, B. B., Lozzio, C. B., Bamberger, E. G., Feliu, A. S. A multipotential leukemia cell line (K-562) of human origin. Proc Soc Exp Biol Med. 166, 546-550 (1981).
  6. Giarratana, M. C. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 23, 69-74 (2005).
  7. Salmon, P., Trono, D. Production and titration of lentiviral vectors. Curr Protoc Neurosci. Chapter 4, (2006).
  8. Chao, M. P., Seita, J., Weissman, I. L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb Symp Quant Biol. 73, 439-449 (2008).
  9. Amsellem, S., Ravet, E., Fichelson, S., Pflumio, F., Dubart-Kupperschmitt, A. Maximal lentivirus-mediated gene transfer and sustained transgene expression in human hematopoietic primitive cells and their progeny. Mol Ther. 6, 673-677 (2002).
  10. Laurenti, E. Inducible gene and shRNA expression in resident hematopoietic stem cells in vivo. Stem Cells. 28, 1390-1398 (2010).
  11. Palii, C. G. Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages. EMBO J. 30, 494-509 (2011).
  12. Fibach, E., Manor, D., Oppenheim, A., Rachmilewitz, E. A. Proliferation and maturation of human erythroid progenitors in liquid culture. Blood. 73, 100-103 (1989).
  13. Wada, H. Expression of major blood group antigens on human erythroid cells in a two phase liquid culture system. Blood. 75, 505-511 (1990).
  14. Sui, X. Erythropoietin-independent erythrocyte production: signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34+ cells. J Exp Med. 183, 837-845 (1996).
  15. Panzenbock, B., Bartunek, P., Mapara, M. Y., Zenke, M. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood. 92, 3658-3668 (1998).
  16. Lindern, M. v. o. n. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 94, 550-559 (1999).
  17. Freyssinier, J. M. amplification and characterization of a population of human erythroid progenitors. Br J Haematol. 106, 912-922 (1999).
  18. Malik, P. An in vitro model of human red blood cell production from hematopoietic progenitor cells. Blood. 91, 2664-2671 (1998).
  19. Carlile, G. W., Smith, D. H., Wiedmann, M. Caspase-3 has a nonapoptotic function in erythroid maturation. Blood. 103, 4310-4316 (2004).
  20. Mazurier, F. Rapid analysis and efficient selection of human transduced primitive hematopoietic cells using the humanized S65T green fluorescent protein. Gene Ther. 5, 556-562 (1998).
  21. Salmon, P. High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood. 96, 3392-3398 (2000).
check_url/pt/2813?article_type=t

Play Video

Citar este artigo
Palii, C. G., Pasha, R., Brand, M. Lentiviral-mediated Knockdown During Ex Vivo Erythropoiesis of Human Hematopoietic Stem Cells. J. Vis. Exp. (53), e2813, doi:10.3791/2813 (2011).

View Video