Summary

在早期鸡胚跟踪形态组织变形

Published: October 17, 2011
doi:

Summary

本文介绍了表面的标签和<em>前OVO</em>在早期鸡胚组织培养。时间推移明场,荧光,和光学相干断层扫描成像技术适合。高时空分辨率的跟踪表面标签,使运动的数量,如在二维和三维计算的形态株(变形)。

Abstract

胚胎上皮细胞进行复杂的变形(如弯曲,扭曲,折叠和拉伸),形成早期胚胎的原始器官。跟踪基准对这些细胞的表表面标记是一个估算,如生长,收缩和剪切形态数量以及建立的方法。然而,并非所有的表面标记技术容易适应传统的成像方式,具有不同的优势和局限性。在这里,我们描述了两种标记方法,并说明每种技术的效用。在第一种方法,荧光标记的数百个应用同时使用铁磁性颗粒的胚胎。然后,这些标签使用量的2 – D组织变形过程中的形态发生。在第二种方法中,聚苯乙烯微球用于非侵入性光学相干断层扫描(OCT)成像造影剂跟踪的3 – D的组织变形。这些技术已成功LY落实在我们的实验室studythe初头倍,心脏和大脑发育,物理机制,并应适应范围广的形态发生过程。

Protocol

1。一般实验准备准备在层流罩组织培养基。 稀贝科改良Eagle培养基(DMEM)(1大号瓶4.5克/ L葡萄糖,碳酸氢钠,和L -谷氨酰胺)。加入10 mL青霉素/链霉素/新霉素抗生素。 取出用无菌移液管的DMEM 100毫升和100毫升鸡血清取代。 分装DMEM/10%的雏鸡血清/ 1%抗生素无菌的15 mL锥形瓶和冻结。 准备磷酸盐缓冲液(PBS)补充钙和镁。混合100毫升10X PBS中,去离子水9…

Discussion

前OVO文化早期鸡胚两种组织标签技术。首先使用通过铁磁性颗粒的亲脂性荧光染料,同时标签数百个细胞。然而,这种方法是目前不兼容光学相干断层扫描,荧光染料一般使用10月10日从周围组织的对比度很小。因此,我们使用聚苯乙烯微球标记时间推移华侨城分析组织的一种替代技术。这种技术产生的3 – D数据集,但必须小心不逐出组织的珠子。在适当的实验环境中使用这些方法?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由国立卫生研究院拨款R01 GM075200和R01 HL083393(LAT)的支持。我们承认从NIH T90的DA022871和Mallinckrodt放射研究所曝气生物滤池的奖学金支持,并从美国心脏协会09PRE2060795授予VDV值。

Materials

Material / Reagent Company Catalogue number Comments
DMEM – high glucose Sigma-Aldrich D5796  
Penicillin/Streptomycin/Neomycin Sigma-Aldrich P4083  
Chicken Serum Invitrogen 16110-082  
Dulbecco’s Phosphate Buffered Saline Sigma-Aldrich D1408 10X
Whatman #2 Filter Paper Whatman 1002 090 90mm diameter
Glass Micropipettes World Precision Instruments (WPI) TW150-6 1.5mm inner diameter
DiI Invitrogen D-282  
Iron Reduced Mallinckrodt Baker Inc. 5320  
10 μm Diameter Microspheres (black) Polysciences Inc. 24294  
Delta T Dish (for time lapse culture) Bioptechs 04200415B 0.17mm thick, black
Delta T4 Culture Dish Controller Bioptechs 0420-4-03  
Mini-Pump Variable Flow Device Fisher Scientific    

Referências

  1. Hamburger, V., Hamilton, H. L. A series of normal stages in the development of the chick embryo. Journal of Morphology. 88, 49-92 (1951).
  2. Canfield, J. G. Dry beveling micropipettes using a computer hard drive. J. Neurosci. Methods. 158, 19-21 (2006).
  3. Voronov, D. A., Taber, L. A. Cardiac looping in experimental conditions: the effects of extraembryonic forces. Developmental Dynamics. 224, 413-421 (2002).
  4. Filas, B. A., Bayly, P. V., Taber, L. A. Mechanical stress as a regulator of cytoskeletal contractility and nuclear shape in embryonic epithelia. Ann. Biomed. Eng. 39, 443-454 (2011).
  5. Kozel, B. A. Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J. Cell. Physiol. 207, 87-96 (2006).
  6. Filas, B. A., Efimov, I. R., Taber, L. A. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. 290, 1057-1068 (2007).
  7. Varner, V. D., Voronov, D. A., Taber, L. A. Mechanics of head fold formation: investigating tissue-level forces during early development. Development. 137, 3801-3811 (2010).
  8. Van Essen, D. C. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443-459 (2001).
  9. Filas, B. A., Knutsen, A. K., Bayly, P. V., Taber, L. A. A new method for measuring deformation of folding surfaces during morphogenesis. J. Biomech. Eng. 130, 061010-061010 (2008).
  10. Yuan, S. Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging. Phys. Med. Biol. 55, 191-206 (2010).
  11. Zamir, E. A., Czirok, A., Rongish, B. J., Little, C. D. A digital image-based method for computational tissue fate mapping during early avian morphogenesis. Ann. Biomed. Eng. 33, 854-865 (2005).
  12. Blanchard, G. B. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat. Methods. 6, 458-464 (2009).
check_url/pt/3129?article_type=t

Play Video

Citar este artigo
Filas, B. A., Varner, V. D., Voronov, D. A., Taber, L. A. Tracking Morphogenetic Tissue Deformations in the Early Chick Embryo. J. Vis. Exp. (56), e3129, doi:10.3791/3129 (2011).

View Video