Summary

可视化线虫角质层结构的亲脂性的重要染料,直接投资收益

Published: January 30, 2012
doi:

Summary

我们提出了一个可视化生活角质层的方法<em> C。线虫</em>使用红色荧光亲脂性染料DII(1,1' – 双十八烷基- 3,3,3',3' – tetramethylindocarbocyanine高氯酸盐),这是常用的<em> C。线虫</em>可视化环境接触的神经元。这种优化的协议,alae和环形表皮结构是由DII染色和使用复合显微镜观察。

Abstract

角质层的C.线虫是一种高度耐药的结构,周围的动物 1-4外部。角质层不仅可以保护环境的动物,但也决定体形和蠕动4-6次的作用。由表皮细胞分泌的几层组成的角质层,包括最外层脂质层7。

在角质层的圆周脊称为环空中的模式动物的长度, 目前在8发展的所有阶段。 Alae有纵脊目前是在特定的发展阶段,包括L1的dauer,和成人阶段2,9。影响表皮胶原组织的基因突变可以改变表皮结构和动物的身体形态 5,6,10,11 。虽然使用DIC的光学显微镜复合表皮成像是可行的,目前的方法,突出表皮结构包括荧光12%的转基因表达,抗体染色,电子显微镜1。也被用来标记麦胚凝集素(WGA)的可视化表皮糖蛋白,但受限于解决更精细的表皮结构 14 。使用荧光染料染色表皮表面已被观察到,但从来没有在细节 15的特点。我们提出了一个方法来可视化角质层在现场 C. 线虫使用红色荧光亲脂性染料DII(1,1' -双十八烷基- 3,3,3',3' – tetramethylindocarbocyanine高氯酸盐),也就是通常用于 C 线虫可视化环境接触的神经元。这是一个简单可靠的方法,高分辨率的荧光可视化的环空中,alae,外阴,男性的尾巴, C和雌雄同体的尾穗DII染色的优化协议线虫

Protocol

1。 DII制备染色准备的20毫克/毫升DII(Biotium公司,公司,海沃德,CA)在DMF原液。 DII是光敏感,所以保护光箔包装DII。 每个人口0.6μLDII股票加入到399.4微升M9的创建工作的DII稀释。这应该给最后的30微克/毫升DII在M9的工作液。这可以扩展多个种群同时染色。盾DII在铝箔包装管(S)。 2。线虫的制备包含一个未被污染的线虫人口使用60毫米的钢板。洗?…

Discussion

这里介绍DII的染色方法,允许一个相对快速和方便的方法来可视化角质层线虫。再利用和优化常用的图像环境暴露15,17感觉神经元的方法,直接投资收益可用于荧光染色alae和环状结构(图1和2),以及外阴,男性的尾巴,和雌雄同体的尾穗(图3)。我们发现,洗液和时间的影响的直接投资收益的能力,始终染色的角质层(表1,图4)。 DII染色环境暴露的神经元的方法使用两个小?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢S.塔内加- Bageshwar,K. Beifuss,S. Kedroske,和HC。萧为有益的讨论。这项工作是由从分子和细胞医学TAMHSC系的启动资金。该化合物的范围和旋转盘购部门和TAMHSC院长办公室提供的资金。一些菌株提供了线虫遗传学中心,这是由国家研究资源中心资助。 pRF4(ROL – 6(su1006))答:消防的礼物。

Materials

Reagents Synonyms Company Catalogue number Comments
DiI 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate Biotium, Inc. 60010 Stock dilution:
20 mg/mL in DMF
working dilution: 30 mg/mL
DMF Dimethylformamide Sigma-Aldrich, Inc. D4551  
Triton
X-100
Octylphenoxypolyethoxyethanol VWR International, LLC. EM-9410  
M9 22mM KH2PO4, 42mM Na2HPO4, 86mM NaCl, 1mM MgSO4      
NGM Nematode growth medium IPM Scientific, Inc. 11006-501 Can be prepared following NGM agar protocol18
Agar-agar   EMD Chemicals, Inc. 1.01614 4% in water
Levamisole Levamisole hydrochloride Sigma-Aldrich, Inc. 31742 100 μM – 1 mM levamisole as required
Microscope slides   VWR International, LLC. 16005-106  
Microscope cover glasses   VWR International, LLC. 16004-302  
Compound scope   Carl Zeiss, Inc. A1m Use objectives to match the needs of the experiment
TRITC or other compatible filter   Chroma Technology Corp. 49005 ET – DSRed (TRITC/Cy3) sputtered filter set

Referências

  1. Cox, G. N., Kusch, M., Edgar, R. S. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. The Journal of Cell Biology. 90, 7-17 (1981).
  2. Cox, G. N., Staprans, S., Edgar, R. S. The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev. Biol. 86, 456-470 (1981).
  3. Hall, D., Altun, Z. . C. elegans Atlas. , (2008).
  4. Page, A. P., Johnstone, I. L. The cuticle. The C. elegans Research Community. , (2007).
  5. Kramer, J. M., Johnson, J. J., Edgar, R. S., Basch, C., Roberts, S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell. 55, 555-565 (1988).
  6. Mende, N. v. o. n., Bird, D. M., Albert, P. S., Riddle, D. L. dpy-13: a nematode collagen gene that affects body shape. Cell. 55, 567-576 (1988).
  7. Blaxter, M. L. Cuticle surface proteins of wild type and mutant Caenorhabditis elegans. The Journal of Biological Chemistry. 268, 6600-6609 (1993).
  8. Costa, M., Draper, B. W., Priess, J. R. The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Dev. Biol. 184, 373-384 (1997).
  9. Sapio, M. R., Hilliard, M. A., Cermola, M., Favre, R., Bazzicalupo, P. The Zona Pellucida domain containing proteins, CUT-1, CUT-3 and CUT-5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Dev. Biol.. 282, 231-245 (2005).
  10. Johnstone, I. L. Cuticle collagen genes. Expression in Caenorhabditis elegans. Trends Genet. 16, 21-27 (2000).
  11. Kramer, J. M., French, R. P., Park, E. C., Johnson, J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell Biol. 10, 2081-2089 (1990).
  12. Thein, M. C. Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Dev. Dyn. 226, 523-539 (2003).
  13. McMahon, L., Muriel, J. M., Roberts, B., Quinn, M., Johnstone, I. L. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Molecular Biology of the Cell. 14, 1366-1378 (2003).
  14. Link, C. D., Ehrenfels, C. W., Wood, W. B. Mutant expression of male copulatory bursa surface markers in Caenorhabditis elegans. Development. 103, 485-495 (1988).
  15. Tong, Y. G., Burglin, T. R. Conditions for dye-filling of sensory neurons in Caenorhabditis elegans. J. Neurosci. Methods. 188, 58-61 (2010).
  16. Singh, R. N., Sulston, J. E. Some observations on moulting in Caenorhabditis elegans. Nematologica. 24, 63-71 (1978).
  17. Collet, J., Spike, C. A., Lundquist, E. A., Shaw, J. E., Herman, R. K. Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genética. 148, 187-200 (1998).
  18. Brenner, S. The genetics of Caenorhabditis elegans. Genética. 77, 71-94 (1974).
check_url/pt/3362?article_type=t

Play Video

Citar este artigo
Schultz, R. D., Gumienny, T. L. Visualization of Caenorhabditis elegans Cuticular Structures Using the Lipophilic Vital Dye DiI. J. Vis. Exp. (59), e3362, doi:10.3791/3362 (2012).

View Video