Summary

旋转的人类细胞培养的细胞培养系统:作为一种模式的滋养细胞

Published: January 18, 2012
doi:

Summary

传统的,二维细胞培养技术,往往导致与分化标志物,细胞因子和生长因子的改变的特点。旋转细胞培养系统的三维细胞培养(农村信用社)重新建立许多因素的表达,绒毛外滋养细胞系。

Abstract

人类滋养细胞研究领域的艾滋病在认识复杂的环境中建立在胎盘。由于这些研究的性质, 体内实验是不可能的。一个小学文化,外植体培养和滋养层细胞系的组合,支持我们的绒毛外滋养细胞(EVTs),这是怀孕的成功建立所必需的入侵的子宫壁子宫螺旋动脉重塑3,4的理解。尽管从这种模型中收集的知识财富,它是接受,使用类似的EVT -细胞株在体外细胞培养模型显示改变细胞特性相比,其在体内同行5,6时。培养细胞在旋转细胞培养系统(农村信用社)显示的EVT样细胞株的形态,表型和功能特性,更加紧密地模仿u的区别人Tero EVTs,调解入侵(如基质金属蛋白酶(MMPs))和滋养层细胞分化7,8,9的基因表达增加。圣乔治医院的胎盘细胞株- 4(SGHPL 4)(请盖伊惠特利博士和博士朱迪思卡特赖特捐赠)是一个EVT样细胞系,用于在农村信用社的测试。

农村信用社培养容器的设计是基于对器官和组织的原则,即在一个三维(3 – D)环境功能。由于在船只动态的文化条件,包括有关生理剪切条件,细胞生长在三个方面形成聚集基于自然细胞亲和力和分化成器官组织集会10,11,12。维护流体轨道提供了一个低剪切,低动荡的环境相似,在体内发现条件。培养细胞沉淀是通过调整旋转反驳加快农村信用社,以确保细胞恒定的自由落体。气体交换发生通过透水疏水膜生物反应器的背面。像他们的父母在体内的组织,能够应对在三个层面(即在其顶端,基底和横向表面),因为他们培养的多孔微载体珠表面上化学和分子梯度力场的细胞生长。像塑料防渗表面的二维膜生长时,细胞被剥夺了这一重要的沟通,在其基底表面。因此,空间限制的环境所施加深刻影响细胞如何从周围的微环境意识和解码信号, 从而暗示13的3 – D环境的重要作用。

我们已经使用了农村信用社工程师7,14,15,16各种人类上皮组织的生物学意义的3 – D模型。事实上,许多以前的报告中有DEMonstrated农村信用社培养细胞可以承担有关生理尚未10,17-21其他机型可能表型。总之,在农村信用社的文化代表了一种简单,重现性好,高通量平台,提供大量分化的细胞,适合各种实验操作。在下面的协议,作为一个例子使用EVTs,我们清楚地说明需要三个维度文化的贴壁细胞在农村信用社的步骤。

Protocol

1。胶原珠的制备在此之前的3 – D细胞培养加载EVTs,需要准备的Cytodex – 3微载体珠: 称取适量的实验所需的Cytodex – 3珠。该协议是适应农村信用社的10毫升船只,其中珠0.05克需要。对于一个50毫升农村信用社的船只,相应的规模。在一个50毫升的高压灭菌的锥形管,混合磷酸12mL贝科250毫克Cytodex – 3珠缓冲液(DPBS)。这一数额是足够5个农村信用社的船只。 确保有足够的量?…

Discussion

这里介绍的文化技术提供具有高度侵袭性​​的EVT样细胞的调查。如今,它已被公认,由于抑制细胞反应,化学和分子线索的三个层面(心尖,基底和横向细胞表面 )10,13在单层发生分化的损失。这种技术反映在子宫内指出入侵的EVT细胞的特点。由于程序模仿传统的单层组织培养的时间动力学,但提供了差异表达的细胞,比较分析可能被雇用。在实验中使用的细胞团可收获,在任?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生授予NIH / NICHD的HD051998(CAM)的机构的支持。

Materials

Name of the reagent Company Catalogue number Comments
Cytodex microcarrier beads Sigma-Aldrich C3275  
Rotating Cell Culture System (RCCS) Synthecon RCCS-D Includes rotor base, power supply, 4 disposable RCCS units
RCCS Disposable Units Synthecon Contact Synthecon  
3ml Luer-Lock tip syringe BD 309585  
10ml wide-tip serological pipette BD 357504  
MEM Alpha Invitrogen 12561-072  
Leibovitz’s L-15 medium, powder Invitrogen 41300-039  
H2O, Endotoxin free Fisher MT-25-055-CM  
Sodium Bicarbonate Sigma-Aldrich S-7795  
Peptone Fisher Scientific BP1420-100  
Fructose Sigma-Aldrich F3510-100  
Galactose Sigma-Aldrich G5388-100  
Glucose Sigma-Aldrich G7528-250  
HEPES Invitrogen 15630-080  
L-Glutamine Invitrogen 25030  
Insulin-Transferrin-Sodium Selenite (ITS) Sigma-Aldrich I1884  
FBS Invitrogen 10437  
Penicillin-Streptomycin Invitrogen 15140  

Referências

  1. Knofler, M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int. J. Dev. Biol. 54, 269-269 (2010).
  2. Cartwright, J. E. Remodelling at the maternal-fetal interface: relevance to human pregnancy disorders. Reproduction. 140, 803-803 (2010).
  3. Harris, L. K. IFPA Gabor Than Award lecture: Transformation of the spiral arteries in human pregnancy: key events in the remodelling timeline. Placenta. 32, S154-S154 (2011).
  4. Whitley, G. S., Cartwright, J. E. Trophoblast-mediated spiral artery remodelling: a role for apoptosis. J. Anat. 215, 21-21 (2009).
  5. Apps, R. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta. 32, 33-33 (2011).
  6. Bilban, M. Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta. 31, 989-989 (2010).
  7. LaMarca, H. L. Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta. 26, 709-709 (2005).
  8. Jovanovic, M., Stefanoska, I., Radojcic, L., Vicovac, L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction. 139, 789-789 (2010).
  9. Husslein, H. Expression, regulation and functional characterization of matrix metalloproteinase-3 of human trophoblast. Placenta. 30, 284-284 (2009).
  10. Barrila, J. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 8, 791-791 (2010).
  11. Hammond, T. G., Hammond, J. M. Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Renal. Physiol. 281, 12-12 (2001).
  12. Unsworth, B. R., Lelkes, P. I. Growing tissues in microgravity. Nat. Med. 4, 901-901 (1998).
  13. Schmeichel, K. L., Bissell, M. J. Modeling tissue-specific signaling and organ function in three dimensions. J. Cell. Sci. 116, 2377-2377 (2003).
  14. Bentrup, H. ?. ?. n. e. r. z. u., K, . Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes. Infect. 8, 1813-1813 (2006).
  15. Carterson, A. J. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect. Immun. 73, 1129-1129 (2005).
  16. Myers, T. A. Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons. J. Neurosci. Methods. 174, 31-31 (2008).
  17. Hjelm, B. E. Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol. Reprod. 82, 617-617 (2010).
  18. Straub, T. M. In vitro cell culture infectivity assay for human noroviruses. Emerg. Infect. Dis. 13, 396-396 (2007).
  19. Nickerson, C. A. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infect. Immun. 69, 7106-7106 (2001).
  20. Carvalho, H. M., Teel, L. D., Goping, G., O’Brien, A. D. A three-dimensional tissue culture model for the study of attach and efface lesion formation by enteropathogenic and enterohaemorrhagic Escherichia coli. Cell. Microbiol. 7, 1771-1771 (2005).
  21. Sainz, B., TenCate, V., Uprichard, S. L. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection. Virol. J. 6, 103-103 (2009).
  22. Lelkes, P. I., Ramos, E., Nikolaychik, V. V., Wankowski, D. M., Unsworth, B. R., Goodwin, T. J. GTSF-2: a new, versatile cell culture medium for diverse normal and transformed mammalian cells. In Vitro Cell. Dev. Biol. Anim. 33, 344-344 (1997).
  23. Lelkes, P. I., Ramos, E., Nikolaychik, V. V., Wankowski, D. M., Unsworth, B. R., Goodwin, T. J. GTSF-2: a new, versatile cell culture medium for diverse normal and transformed mammalian cells. In Vitro Cell. Dev. Biol. Anim. 33, 344-344 (1997).
  24. GE Healthcare. Microcarrier Cell Culture – Principles and Methods. Handbooks. , (2005).
check_url/pt/3367?article_type=t

Play Video

Citar este artigo
Zwezdaryk, K. J., Warner, J. A., Machado, H. L., Morris, C. A., Höner zu Bentrup, K. Rotating Cell Culture Systems for Human Cell Culture: Human Trophoblast Cells as a Model. J. Vis. Exp. (59), e3367, doi:10.3791/3367 (2012).

View Video