Summary

RNAi筛选识别胚后的表型 C。线虫</em

Published: February 13, 2012
doi:

Summary

我们描述了致敏的方法来确定胚后调节蛋白表达和定位<em> C。线虫</em>使用RNAi技术为基础的基因组的屏幕和一个综合的功能,荧光标记的蛋白质基因的表达。

Abstract

线虫已被证明是一个有价值的发现和功能分析很多基因和基因途径1模型系统。在这个系统中的研究更先进的工具和资源,促进具有更微妙的表型或角色的基因的不断发现。

在这里,我们提出了一个广义的协议,我们确定C.适应利用RNAi的利益胚后表型线虫基因。这个过程很容易地修改,以检测表型的选择,无论光或荧光光学显微镜解剖或复合。此场次协议利用生物体的有形资产和C.分子工具线虫研究社会生产。作为一个例子,我们展示了一个综合的转基因表达的RNAi屏幕荧光产品的使用,以确定这是正常的本地化所需的基因产品在后期幼虫和成虫。首先,我们用全长cDNA插入市售的RNA干扰基因库。这个库有助于减少候选基因产品通过RNAi多个考生的快速识别。第二,我们产生了一个综合的利益我们fluorecently标签蛋白基因的表达RNAi敏感的背景。第三,暴露孵出的动物RNA干扰,这个屏幕允许有一个重要的胚胎的作用,否则屏蔽后胚胎的作用,在调节蛋白基因的产品鉴定。最后,该屏幕采用单细胞分辨率配备一个复合显微镜。

Protocol

1。筛选菌株建设精心设计的筛选菌株屏幕上的成功是至关重要的,并已在别处3。对于一些研究人员,用应变表示有形的产品,从转基因的实验需要。许多窝藏集成转基因的菌株是从总部大楼或个别研究人员。如果转基因株所需的屏幕上,但不可用,那么它可以使用像轰击紫外/ TMP 5,4,或MOS座子插入6发表的方法产生。为了形象化我们感兴趣的蛋白质?…

Discussion

这里提出的RNAi筛选方法使胚后的表型正常(或基因)所需要的基因产物的敏感和快速分析。所示的例子是屏幕中的荧光标记的蛋白质的亚细胞定位有关的基因。然而,这项协议可以进行修改,以确定影响其他感兴趣的胚后表型的基因。

此方法采用候选基因的方法,通过使用RNA干扰库的优势。利用诱变技术正向遗传筛选确定随机引起的新的等位基因,这些等位基因需要大量时?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者想感谢里克·帕吉特博士(瓦克斯曼研究所,罗格斯大学,新泽西州)DBL-1基因和注射标记,博士,克里Rongo(瓦克斯曼研究所,罗格斯大学,新泽西州)的礼物。巴特格兰特博士的实验室进行基因枪轰击低拷贝数一体化的GFP标记DBL-1构造。勒内·加西亚实验室提供在创造texIs100技术援助。勒内·加西亚,罗宾Lints,李洪敏秦实验室提供了富有成效的意见。这项工作的启动资金是由TAMHSC从分子和细胞医学系。由部门和医学院院长办公室TAMHSC学院提供的资金购买该化合物的范围和旋转盘共聚焦。

Materials

Name of the reagent Company Catalogue number Comments
NGM Agar Nematode growth medium IPM Scientific, Inc Can be prepared following NGM agar protocol25
M9 Medium 22mM KH2PO4,
42mM Na2HPO4,
86mM NaCl,
1 mM MgSO4
  26
Agar-Agar EMD Chemicals Inc. 1.01614.1000 2% in water for NGM plates. 4% in water for microscope slide pads (autoclave initially and microwave to melt thereafter).
Bacto Peptone Becton Dickinson – Difco CP 211677 0.25%
IPTG Research Products International Corp. I56000-5.0 1 mM final concentration
carbenicillin Research Products International Corp. C46000-5.0 50 μg/ml working dilution
LB Broth Lennox Becton Dickinson – Difco CP 240230 20 g/liter
tetracycline Sigma 268054 12.5 μg/ml working dilution
sodium hypochlorite Any brand 5% household bleach Use fresh bleach.
sodium hydroxide Any Brand CAS 1310-73-2 5 N stock
M9 medium Wormlab Recipe Book http://130.15.90.245/wormlab_recipe_book.htm#Commonlab 26
levamisol Sigma 31742 100 μM – 1 mM working dilution
sodium azide Fisher Scientific S227 10 mM in M9 working dilution
24-well plate Greiner Bio-One 662160 VWR distributor
microscope slides Any brand 75 x 25 x 1 mm  
microscope cover slips Any brand 22 x 22 mm No.1.5 Use the thickness recommended by the microscope manufacturer.
compound microscope Carl Zeiss, Inc. A1m Use objectives and filters to match the needs of the experiment.
media pump Manostat Varistaltic pump Kate
model #72-620-000
Use tubing and settings appropriate for the machine

Referências

  1. Giacomotto, J., Segalat, L. High-throughput screening and small animal models, where are we. Br. J. Pharmacol. 160, 204-216 (2010).
  2. Lamitina, T. Functional genomic approaches in C. elegans. Methods in Molecular Biology. 351, 127-138 (2006).
  3. Boutros, M., Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554-566 (2008).
  4. Praitis, V., Casey, E., Collar, D., Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genética. 157, 1217-1226 (2001).
  5. Yandell, M. D., Edgar, L. G., Wood, W. B. Trimethylpsoralen induces small deletion mutations in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 91, 1381-1385 (1994).
  6. Frokjaer-Jensen, C. Single-copy insertion of transgenes in Caenorhabditis elegans. Nature Genetics. 40, 1375-1383 (2008).
  7. Giordano-Santini, R., Dupuy, D. Selectable genetic markers for nematode transgenesis. Cell. Mol. Life. Sci. , (2011).
  8. Berkowitz, L. A., Knight, A. L., Caldwell, G. A., Caldwell, K. A. Generation of Stable Transgenic C. elegans Using Microinjection. J. Vis. Exp. (18), e833 (2008).
  9. Mello, C., Fire, A. DNA transformation. Methods in Cell Biology. 48, 451-482 (1995).
  10. Simmer, F. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317-1319 (2002).
  11. Zhuang, J. J., Hunter, C. P. Tissue-specificity of Caenorhabditis elegans enhanced RNAi mutants. Genética. , (2011).
  12. Samuelson, A. V., Klimczak, R. R., Thompson, D. B., Carr, C. E., Ruvkun, G. Identification of Caenorhabditis elegans genes regulating longevity using enhanced RNAi-sensitive strains. Cold Spring Harbor Symposia on Quantitative Biology. 72, 489-497 (2007).
  13. Wang, D. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature. 436, 593-597 (2005).
  14. Fraser, A. G. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 408, 325-330 (2000).
  15. Kamath, R. S. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 421, 231-237 (2003).
  16. Peters, K., McDowall, J., Rose, A. M. Mutations in the bli-4 (I) locus of Caenorhabditis elegans disrupt both adult cuticle and early larval development. Genética. , 129-195 (1991).
  17. Thacker, C., Peters, K., Srayko, M., Rose, A. M. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes & Development. 9, 956-971 (1995).
  18. Byerly, L., Cassada, R. C., Russell, R. L. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev. Biol. 51, 23-33 (1976).
  19. Stiernagle, T. Maintenance of C. elegans. WormBook. , 1-11 (2006).
  20. Savage-Dunn, C. Genetic screen for small body size mutants in C. elegans reveals many TGFbeta pathway components. Genesis. 35, 239-247 (2003).
  21. Qu, W. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens. BMC Genomics. 12, 1471-2164 (2011).
  22. Nelson, M. D. A Bow-Tie Genetic Architecture for Morphogenesis Suggested by a Genome-Wide RNAi Screen in Caenorhabditis elegans. PLoS Genetics. 7, e1002010 (2011).
  23. Timmons, L., Fire, A. Specific interference by ingested dsRNA. Nature. 395, 854 (1998).
  24. Sarin, S., Prabhu, S., O’Meara, M. M., Pe’er, I., Hobert, O. Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nature Methods. 5, 865-867 (2008).
  25. Lewis, J. A., Fleming, J. T. Basic culture methods. Methods in Cell Biology. 48, 3-29 (1995).
  26. Brenner, S. The genetics of Caenorhabditis elegans. Genética. 77, 71-94 (1974).
check_url/pt/3442?article_type=t

Play Video

Citar este artigo
Beifuss, K. K., Gumienny, T. L. RNAi Screening to Identify Postembryonic Phenotypes in C. elegans. J. Vis. Exp. (60), e3442, doi:10.3791/3442 (2012).

View Video