Summary

Dinamica dopamina presinaptica in fettine di cervello striatale con Fast-scan Voltammetria ciclica

Published: January 12, 2012
doi:

Summary

Tramite scansione veloce voltammetria ciclica per misurare elettricamente evocate dinamiche dopamina presinaptica in fettine di cervello striatale.

Abstract

La vasta ricerca si è concentrata sul neurotrasmettitore dopamina a causa della sua importanza nel meccanismo d'azione dei farmaci d'abuso (ad esempio la cocaina e anfetamine), il ruolo che gioca in malattie psichiatriche (es. schizofrenia e Attention Deficit Hyperactivity Disorder), e il suo coinvolgimento in degenerativa disturbi come il Parkinson e la malattia di Huntington. In condizioni fisiologiche normali, la dopamina è noto per regolare l'attività locomotoria, conoscenza, apprendimento, influiscono emotivo, e la secrezione ormonale neuroendocrino. Uno dei più grandi densità di neuroni dopaminergici è all'interno del corpo striato, che possono essere suddivisi in due distinte regioni neuroanatomiche conosciuto come il nucleo accumbens e del caudato-putamen. L'obiettivo è quello di illustrare un protocollo generale per la fetta di scansione veloce voltammetria ciclica (FSCV) all'interno del corpo striato mouse. FSCV è una ben definita tecnica elettrochimica fornendo l'opportunità di misurare il rilascio di dopamina e la diffusione in tempo reale discrete cervello regioni. Microelettrodi in fibra di carbonio (diametro di circa 7 micron) sono utilizzati in FSCV per rilevare l'ossidazione della dopamina. Il vantaggio di utilizzare FSCV analitici per rilevare la dopamina è la sua migliore risoluzione temporale di 100 millisecondi e una risoluzione spaziale di meno di dieci micron, fornendo informazioni complementari al microdialisi in vivo.

Protocol

1. Essenziali sperimentale Elettrodo Fabrication Ci sono numerosi microelettrodi in fibra di carbonio fabbricazione metodi poiché la maggior parte sono realizzati in-house. Di solito quello che detta i dettagli elettrodo fabbricazione è la tecnica elettrochimica che viene applicata agli elettrodi (ad esempio amperometria vs FSCV). Per FSCV, microelettrodi può essere fatto in casa utilizzando la seguente procedura in tre fasi. Per una descrizione più completa della f…

Discussion

Il protocollo presentato qui dimostra come preparare e utilizzare fette coronali del cervello del mouse per gli esperimenti FSCV. Anche se questo metodo è specifico per ottenere e misurare la dinamica della dopamina, neurotrasmettitori altri come l'adenosina, perossido di idrogeno, noradrenalina e serotonina sono stati monitorati in vivo o in vitro con FSCV 3, 8 – 11. FSCV può essere utilizzato per monitorare alcune di queste sostanze neurochimiche altri semplici modifiche della forma …

Declarações

The authors have nothing to disclose.

Acknowledgements

Finanziamenti forniti dal National Institute on abuso di alcool e l'alcolismo (NIAAA; AA-016967 e AA016967-01S1, TAM), Wayne State University di avvio dei fondi, e la Wayne State University Research Grant Program. Il contenuto è di esclusiva responsabilità degli autori e non rappresenta il punto di vista ufficiale del NIAAA o il National Institutes of Health.

Materials

Name Company CAS number

Reagent

   

Potassium Chloride

Fisher

7447407

Sodium chloride

EMD Chemicals

7647145

Magnesium chloride

Fisher

7791186

Calcium chloride

Fisher

10035048

Sodium bicarbonate

EMD Chemicals

144558

Sodium phosphate,Dibasic

EMD Chemicals

7558794

D-glucose

Fisher

50997

Ascorbic acid

Fisher

50817

Sucrose

Fisher

57501

 

 

 

Materials

Vendor

Catalogue number

Carbon fiber

Goodfellow Oakdale, PA  

Glass capillary

A-M Systems Carlsborg  WA. 602000

Silver wire

A-M Systems Carlsborg  WA. 787000

Tungsten stimulating electrode

Plastics One, Roanoke, VA  

Platinum wire

   

Lead wire

Squires Electronics, Cornelius, OR  

Loctite 404 instant adhesive

Hankal Corp. Rocky Hill
CT.
 

Razor blade

World precision Instruments Inc. FL.  

BD Spinal needle

BD Medical systems,
Franlin  Lake, NJ
REF 405234

Surgical Blade

Feather  Safety razor Co. LTD. Japan  

 

   

Software

Vendor

Catalogue number

TH software

ESA Inc.,Chelmsford, MA  

Instrument

Vendor

Catalogue number

Submersion recording chamber

Custom Scientific, Denver, CO  

Neorolog stimulus isolator

Digitmeter, Hertfordshire, England  

Automatic  temperature controller

Warner Instrument Corporation  

Microscope (SZX7)

Olympus  

Microscope

Fisher  

Vibratome 3000 sectioning  system

St. Louis , MO.  

Perfusion pump

Watson Marlow Limited, Falmouth Cornwall – England H110708

Micropipette puller

Narishige, Tokyo, Japan  

ChemClamp potentiostat

Dagan Corporations,
Minneapolis, MN.
 

Referências

  1. Pike, C. M., Grabner, C. P., Harkins, A. B. Fabrication of Amperometric Electrodes. J. Vis. Exp. (27), e1040-e1040 (2009).
  2. Lack, A. K., Diaz, M. R., Chappell, A., DuBois, D. W., McCool, B. A. Chronic ethanol and withdrawal differentially modulate pre- and postsynaptic function at glutamatergic synapses in rat basolateral amygdala. J. Neuropyhysiol. 98, 3185-3196 (2007).
  3. John, C. E., Jones, S. R. Voltammetric characterization of the effect of monoamine uptake inhibitors and release on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices. Neuropharmacology. 52, 1596-1605 (2007).
  4. Wightman, R. M., Amatore, C., Engstrom, R. C., Hale, P. D., Kistensen, E. W., Kuhr, W. G., May, L. J. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neurociência. 25, 513-523 (1988).
  5. Wightman, R. M., Zimmerman, J. B. Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain. Res. Brain. Res. Rev. 15, 135-144 (1990).
  6. Jones, S. R., Garris, P. A., Kilts, C. D., Wightman, R. M. Comparison of dopamine uptake in the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens of the rat. J. Neurochem. 64, 2581-2589 (1995).
  7. Michael, D. J., Wightman, R. M. Electrochemical monitoring of biogenic amine neurotransmission in real time. J. Pharm. Biomed. Anal. 19, 33-46 (1999).
  8. Pajski, M. L., Venton, B. J. Adenosine release evoked by short electrical stimulations in striatal brain slices is primarily activity dependent. A.C.S. Chem. Neurosci. 1, 775-787 (2010).
  9. Sanford, A. L., Morton, S. W., Whitehouse, K. L., Oara, H. M., Lugo-Morales, L. Z., Roberts, J. G., Sombers, L. A. Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal. Chem. 82, 5205-5210 (2010).
  10. Park, J., Kile, B. M., Wightman, R. M. In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus. Eur. J. Neurosci. 30, 2121-2133 (2009).
  11. Hashemi, P., Dankoski, E. C., Petrovic, J., Keithley, R. B., Wightman, R. M. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81, 9462-9471 (2009).
  12. Borue, X., Cooper, S., Hirsh, J., Condron, B., Venton, B. J. Quantitative evaluation of serotonin release and clearnece in drosophila. J. Neuroscience. Methods. 179, 300-308 (2009).
  13. Vickrey, T. L., Condron, B., Venton, B. J. Detection of endogenous dopamine changes in drosophila melanogaster using fast-scan cyclic voltammetry. Anal. Chem. 81, 9306-9313 (2009).
  14. Makos, M. A., Han, K. A., Heien, M. L., Ewing, A. G. Using in vivo electrochemistry to study the physiological effects of cocaine and other stimulants on the drosophila melanogaster dopamine transporter. A.C.S. Chem Neurosci. 1, 74-83 (2009).
  15. Budygin, E. A., John, C. E., Mateo, Y., Daunais, J. B., Friedman, D. P., Grant, K. A., Jones, S. R. Chronic ethanol exposure alters presynaptic dopamine function in striatum of monkeys: a preliminary study. Synapse. 50, 266-268 (2003).
  16. Jones, S. R., Gainetdinov, R. R., Jaber, M., Giros, B., Wightman, R. M., Caron, M. G. Profound neuronal plasticity in response to inactivation of the dopamine transporter. PNAS. 95, 4029-4034 (1998).
  17. Kennedy, R. T., Jones, S. R., Wightman, R. M. Dynamic observation of dopamine autoreceptor effects in rat striatal slices. J. Neurochem. 59, 449-445 (1992).
  18. Rice, M. E., Cragg, S. J. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 7, 583-584 (2004).
  19. Zhang, L., Doyon, W. M., Clark, J. J., Phillips, P. E., Dani, J. A. Controls of tonic and phasic dopamine transmission in the dorsal and ventral. 76, 396-404 (2009).
  20. Paredes, D., Grnaholm, A. C., Bickford, P. C. Effects of NGF and BDNF on baseline glutamate and dopamine release in the hippocampal formation of the adult rat. Brain. Res. 11141, 56-64 (2007).
  21. Goggi, J., Puller, I. A., Carney, S. L., Bradford, H. F. Signalling pathways involved in the short-term potentiation of dopamine release by BDNF. Brain. Res. 968, 156-161 (2003).
  22. Cheer, J. F., Wassum, K. M., Heien, M. L., Phillips, P. E., Wightman, R. M. Cannabinoids enhance subsecond doapmine relese in the nucleus accumbens of awake rats. J. Neurosci. 24, 4393-4400 (2004).
  23. Phillips, P. E., Stuber, G. D., Heien, M. L., Wightman, R. M., Carelli, R. M. Subsecond dopamine release promotes cocaine seeking. Nature. 422, 614-618 (2003).
  24. Robinson, D. L., Heien, M. L., Wightman, R. M. Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats duing introduction of conspecifics. J. Neurosci. 22, 10477-10486 (2002).
check_url/pt/3464?article_type=t

Play Video

Citar este artigo
Maina, F. K., Khalid, M., Apawu, A. K., Mathews, T. A. Presynaptic Dopamine Dynamics in Striatal Brain Slices with Fast-scan Cyclic Voltammetry. J. Vis. Exp. (59), e3464, doi:10.3791/3464 (2012).

View Video