Summary

Kartläggning molekylär diffusion i plasmamembranet med Multiple-Target Tracing (MTT)

Published: May 27, 2012
doi:

Summary

Flera Target Spårning är en hemmagjord algoritm som utvecklats för att spåra enskilda märkta molekyler inom plasmamembranet av levande celler. Effektivt upptäcka, bedöma och spårning molekyler över tid vid hög densitet ger en användarvänlig, heltäckande verktyg för att undersöka nanonivå membran dynamik.

Abstract

Vårt mål är att få en heltäckande beskrivning av molekylära processer som förekommer vid cellmembran i olika biologiska funktioner. Vi strävar efter att karakterisera den komplexa organisationen och dynamiken i plasmamembranet vid enda molekyl nivå, genom att utveckla analytiska verktyg avsedda för Single-Particle Tracking (SPT) med hög densitet: Multiple-Target Tracing (MTT) 1. Enda molekyl videomikroskopi, som erbjuder millisekund och nanometrisk upplösning 1-11, tillåter en detaljerad representation av membranet organisation 12-14 genom noggrann kartläggning deskriptorer såsom cell-receptorer lokalisering, mobilitet, inneslutning eller interaktioner.

Vi revisited SPT, både experimentellt och algoritmiskt. Experimentella aspekter var bland annat att optimera inställningarna och cell märkning, med särskild tonvikt på att nå högsta möjliga märkning densitet, för att ge en dynamisk bild av molekylära dynamik enar den förekommer i membranet. Algoritmiska frågor som berörs varje steg för att återuppbygga banor: toppar upptäckt, uppskattning och återkoppling, som omfattas av särskild verktyg från bildanalys 15,16. Implementera deflation efter detektering kan rädda toppar början döljas av intilliggande, starkare toppar. Att notera, att förbättra upptäckt direkt påverkar återanslutning, genom att minska klyftorna inom banor. Föreställningar har utvärderats med hjälp Monte-Carlo simuleringar för olika märkning densitet och värderingar buller, som vanligtvis representerar de två stora begränsningar för parallella mätningar med hög Spatiotemporal upplösning.

Den nanometrisk noggrannhet 17 erhållits för enstaka molekyler, antingen successiv on / off photoswitching eller icke-linjär optik, kan leverera uttömmande synpunkter. Detta är grunden för nanoscopy metoder 17 såsom STORMEN 18, PALM 19,20, RESOLFT 21 eller sted 22,23, WHIch kan ofta kräver avbildning fasta prover. Den centrala uppgiften är att upptäcka och uppskattning av diffraktionsbegränsad toppar som härrör från enskilda molekyler. Därför tillhandahålla lämpliga antaganden om bland annat hantering av ett konstant lägesnoggrannhet i stället för Brownsk rörelse, är MTT rakt lämpad för nanoskopiska analyser. Dessutom kan MTT grunden användas på vilken skala som helst: inte bara för molekyler, men också för celler eller djur, till exempel. Därför är MTT en kraftfull spårning algoritm som hittar tillämpningar på molekylära och cellulära skalor.

Protocol

I den här filmen presenterar vi en fullständig enda experiment partikel spårning med hjälp av Quantum-punkter riktade till en specifik membranreceptor. Det främsta syftet med detta experiment består i diskriminerande olika typer av molekylär diffusion beteenden mäts i plasmamembranet av levande celler. I själva verket kan molekylära rörelser som uppstår på membranet avviker normalt från Brownsk diffusion genom att linjärt riktade eller begränsade inom nanodomains 26-29, till exempel. Vi sträv…

Discussion

I enkel-partikel spårning, bredvid cellen och mikroskopi aspekter utgör analysen en väsentlig del av arbetet. Detta tar den algoritm som används för att utföra de tre huvuduppgifter: att upptäcka, bedöma och återansluta topparna över varje bildruta. Men därmed del i detta arbete ligger i att utarbeta själva algoritmen, som kan behöva anpassas för en ny särskild utredning, främst för de sista, extra stegen (t.ex. dechiffrera former av rörelse, interaktioner eller stökiometri).

<p class="jove_conten…

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi tackar medlemmarna i vårt team, särskilt MC Blache för tekniskt bistånd, samt M Irla och B Imhof, för deras stöd och givande diskussioner. Siffrorna för deflation och inneslutning återges med tillstånd av Nature Methods. Projektet stöds av institutionella bidrag från CNRS, INSERM och Marseille universitet, och genom särskilda bidrag från regionen Provence-Alpes-Côte-d'Azur, Institut National du Cancer, Agence Nationale de la Recherche (ANR-08-PCVI- 0034-02, ANR 2010 blan 1214 01) & Fondation pour la Recherche médicale (Equipe labélisée FRM-2009). VR stöds av ett stipendium från Ligue Nationale Contre le Cancer.

Materials

Reagent Company Catalogue number Quantity
Cos-7 cell line ATCC CRL-1651 5,000 cells/well
HBSS without Ca2+ GIBCO 14175 1 ml
0.05% Trypsin EDTA GIBCO 25300 1 ml
8-well Lab-tek NUNC 155441 1
QDot-605 streptavidin Invitrogen Q10101MP 20 mM
Biotinylated Fab (for Fab synthesis, see reference 21)
Fab from mAb 108 ATCC HB-9764 200 μg
NHS-Biotin Thermo Scientific 21435 18.5 μg
Complete medium
DMEM GIBCO 41965 500 ml
Fetal Bovine Serum SIGMA F7524 50 ml
L-Glutamine GIBCO 25030 5 ml
HEPES GIBCO 15630 5 ml
Sodium Pyruvate GIBCO 11360 5 ml
Imaging medium
HBSS with Ca2+ GIBCO 14025 25 ml
HEPES GIBCO 15630 250 μl

 

Equipment Company Reference
Inverted microscope Nikon Eclipse TE2000U
Fluorescent lamp Nikon Intensilight C-HGFIE
1.3 NA 100x objective Nikon Plan Fluor 1.30
1.49 NA 100x objective Nikon APO TIRF 1.49
Camera Roper Scientific Cascade 512 B
Thermostated box Life Imaging Services The Box

Appendix: example Script of MTT supplementary analysis

function MTT_example(file_name)
%%% Basic examples showing how to recover MTT output results
%%% to plot each trace and to build the histogram
%%% of fluorescence intensities

if nargin<1 % no file_name provided?
    files = dir(‘*.stk’);
    if isempty(files), disp(‘no data in current dir’), return, end
    file_name = files(1).name; % default: first stk file
    disp([‘using’ file_name ‘by default’])
end

file_param = [file_name ‘_tab_param.dat’]; % output file

%% Load data
cd(‘output23′) % or (‘output22’), according to version used
% Disclaimer: version 2.2 only generates 7 parameters,
% an extra parameter, noise, was added in version 2.3

% To read all parameters at once, in a single table
% tab_param = fread_all_param(file_param);
% tab_i = tab_param(2:8:end, :); tab_j = …

% To read all parameters (except frame_number) in separate tables
% [tab_i,tab_j,tab_alpha,tab_radius,tab_offset,tab_blk,tab_noise] = fread_all_data_spt(file_param);

tab_i = fread_data_spt(file_param, 3); % index is 3 because trace number & frame number, non informative, are discarded!
tab_j= fread_data_spt(file_param, 4);
tab_alpha = fread_data_spt(file_param, 5);
tab_blk = fread_data_spt(file_param, 8);

%% Loop over traces
N_traces = size(tab_i,1);
% Tables are N_traces lines by N_frames colums

for itrc = 1:N_traces
    No_blk_index = tab_blk(itrc, :)>0; % non blinking steps only
     plot(tab_i(itrc, No_blk_index), tab_j(itrc, No_blk_index))
    xlabel(‘i (pixel)’), ylabel(‘j (pixel)’)
    title([‘trace # ‘ num2str(itrc)])
    disp(‘Please strike any key for next trace’), pause
end

%% Fluo histogram
N_datapoints = sum(tab_blk(:)>0); % non blinking steps only
hist(tab_alpha(tab_blk>0),2*sqrt(N_datapoints)) % using 2sqrt(N) bins
xlabel(‘intensity (a.u.)’), ylabel(‘occurrence’)
title(‘histogram of particles fluorescence intensity’)

Referências

  1. Serge, A., Bertaux, N., Rigneault, H., Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods. 5, 687-694 (2008).
  2. Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J., Schindler, H. Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. U S A. 93, 2926-2929 (1996).
  3. Lommerse, P. H. Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys. J. 86, 609-616 (2004).
  4. Marguet, D., Lenne, P. F., Rigneault, H., He, H. T. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO. J. 25, 3446-3457 (2006).
  5. Saxton, M. J., Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
  6. Dahan, M. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science. 302, 442-445 (2003).
  7. Harms, G. S. Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys. J. 81, 2639-2646 (2001).
  8. Iino, R., Koyama, I., Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667-2677 (2001).
  9. Sako, Y., Minoghchi, S., Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168-172 (2000).
  10. Schutz, G. J., Kada, G., Pastushenko, V. P., Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. Embo. J. 19, 892-901 (2000).
  11. Seisenberger, G. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science. 294, 1929-1932 (2001).
  12. Jacobson, K., Sheets, E. D., Simson, R. Revisiting the fluid mosaic model of membranes. Science. 268, 1441-1442 (1995).
  13. Saffman, P. G., Delbruck, M. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U S A. 72, 3111-3113 (1975).
  14. Singer, S. J., Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science. 175, 720-731 (1972).
  15. Papoulis, A. . Probability, Random Variables and Stochastic Process 277. , (2001).
  16. Van Trees, H. L. . Detection, Estimation, and Modulation Theory, Wiley Inter-Science. , (1968).
  17. Moerner, W. E. Single-molecule mountains yield nanoscale cell images. Nat. Methods. 3, 781-782 (2006).
  18. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods. 3, 793-795 (2006).
  19. Betzig, E. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642-1645 (2006).
  20. Manley, S. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 5, 155-157 (2008).
  21. Andrew, S. M. Enzymatic digestion of monoclonal antibodies. Methods Mol. Med. 40, 325-331 (2000).
  22. Hell, S. W., Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782 (1994).
  23. Klar, T. A., Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954-956 (1999).
  24. Meilhac, N., Guyader, L. L. e., Salome, L., Destainville, N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 73, 011915 (2006).
  25. Saxton, M. J. Single-particle tracking: effects of corrals. Biophys. J. 69, 389-398 (1995).
  26. Serge, A., Fourgeaud, L., Hemar, A., Choquet, D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22, 3910-3920 (2002).
  27. Simson, R., Sheets, E. D., Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989-993 (1995).
  28. Jacobson, K., Dietrich, C. Looking at lipid rafts. Trends Cell Biol. 9, 87-91 (1999).
  29. Kusumi, A., Sako, Y., Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021-2040 (1993).
  30. Livneh, E. Large deletions in the cytoplasmic kinase domain of the epidermal growth factor receptor do not affect its laternal mobility. J. Cell Biol. 103, 327-331 (1986).
  31. Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and. 4, 435-446 (2005).
  32. Wu, X., Bruchez, M. P. Labeling cellular targets with semiconductor quantum dot conjugates. Methods Cell Biol. 75, 171-183 (2004).
  33. Mohammadi, M. Aggregation-induced activation of the epidermal growth factor receptor protein tyrosine kinase. Bioquímica. 32, 8742-8748 (1993).
  34. Howarth, M. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods. 5, 397-399 (2008).
  35. Bertaux, N., Marguet, D., Rigneault, H., Sergé, A. Multiple-target tracing (MTT) algorithm probes molecular dynamics at cell surface. Protocol Exchange. , (1038).
  36. Groc, L. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27, 12433-12437 (2007).
  37. Cui, B. One at a time, live tracking of NGF axonal transport using quantum dots. Proceedings of the National Academy of Sciences of the United States of America. 104, 13666-13671 (2007).
  38. He, H. T., Marguet, D. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 417-436 (2011).
  39. Cebecauer, M., Spitaler, M., Serge, A., Magee, A. I. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell. Sci. 123, 309-320 (2010).
  40. Kao, H. P., Verkman, A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67, 1291-1300 (1994).
check_url/pt/3599?article_type=t

Play Video

Citar este artigo
Rouger, V., Bertaux, N., Trombik, T., Mailfert, S., Billaudeau, C., Marguet, D., Sergé, A. Mapping Molecular Diffusion in the Plasma Membrane by Multiple-Target Tracing (MTT). J. Vis. Exp. (63), e3599, doi:10.3791/3599 (2012).

View Video