Summary

La construcción de un hidrogel de colágeno para la entrega de la madre microesferas cargadas con células quitosano

Published: June 01, 2012
doi:

Summary

Un obstáculo importante en las actuales terapias con células madre es determinar el método más eficaz para proporcionar a estas células a los tejidos del huésped. A continuación, describimos un método de entrega basado en quitosano que sea eficiente y simple en el planteamiento, al tiempo que permite derivadas de tejido adiposo de células madre para mantener su multipotencia.

Abstract

Las células madre pluripotentes han demostrado ser extremadamente útil en el campo de la medicina regenerativa 1-3. Sin embargo, con el fin de utilizar eficazmente estas células para la regeneración de tejido, un número de variables deben ser tenidas en cuenta. Estas variables incluyen: el volumen total y el área superficial del sitio de implantación, las propiedades mecánicas de los tejidos y el microambiente del tejido, que incluye la cantidad de vascularización y los componentes de la matriz extracelular. Por lo tanto, los materiales que se utilizan para entregar estas células deben ser biocompatibles con una composición química definida mientras se mantiene una resistencia mecánica que imita el tejido huésped. Estos materiales también debe ser permeable al oxígeno y nutrientes para proporcionar un microambiente favorable para las células para sujetar y proliferar. El quitosano, un polisacárido catiónico con una excelente biocompatibilidad, puede ser fácilmente modificado químicamente y tiene una alta afinidad para unirse con in vivo macromolecules 4-5. El quitosano imita la porción glucosaminoglucano de la matriz extracelular, lo que le permite funcionar como un sustrato para la adhesión celular, la migración y proliferación. En este estudio se utilizan quitosano en forma de microesferas para entregar derivadas de tejido adiposo células madre (ASC) en una base de colágeno tridimensional andamio 6. Un ideal de célula a microesfera relación se determinó con respecto al tiempo de incubación y densidad de las células para alcanzar el número máximo de células que podrían ser cargados. Una vez ASC se siembran en las microesferas de quitosano (MCS), que están incorporados en un armazón de colágeno y pueden mantenerse en cultivo durante períodos prolongados. En resumen, este estudio proporciona un método para entregar, precisamente, las células madre dentro de un andamio de tres dimensiones biomaterial.

Protocol

1. Aislamiento adiposo células madre derivadas de (ASC) Nota: Todos los procedimientos se realizaron a temperatura ambiente a menos que se indique lo contrario. Aislar adiposo perirrenal rata y epididimal y se lava con solución estéril de Hank sal tamponada (HBSS) que contenía 1% de suero fetal bovino (SFB) como se describió anteriormente 6. Picar el tejido y transferir 1-2 g en 25 ml de HBSS conteniendo FBS al 1% en un tubo de 50 ml y se…

Discussion

Un obstáculo importante en las células madre basado en la terapia es el desarrollo de métodos eficientes para la entrega de las células de las regiones indicadas para su reparación. Debido a la variabilidad paciente a paciente, el tipo de tejido, el tamaño de la lesión y profundidad; la metodología de las células madre con envío debe determinarse sobre una base de caso por caso. A pesar de incorporar las células madre dentro de una matriz y su entrega a la zona de la herida que parece ser un enfoque más lóg…

Declarações

The authors have nothing to disclose.

Acknowledgements

DOZ con el apoyo de una subvención concedida por La Fundación de Ginebra. SN fue apoyado por una beca Postdoctoral Fellowship de la Iniciativa de Ingeniería de Tejidos de Pittsburgh.

Materials

Name of the reagent/equipment Company Catalogue number Comments
Hanks BalancedSalt Solution (HBSS) Gibco 14175 Consumable
Fetal Bovine Serum Hyclone SH30071.03 Consumable
Collagenase Type II Sigma-Aldrich C6685 Consumable
70-μm nylon mesh filter BD Biosciences 352350 Consumable
100-μm nylon mesh filter BD Biosciences 352360 Consumable
MesenPRO Growth Medium System Invitrogen 12746-012 Consumable
L-glutamine Gibco 25030 Consumable
T75 Tissue Culture Flask BD Biosciences 137787 Consumable
Chitosan Sigma-Aldrich 448869 Consumable
Acetic Acid Sigma-Aldrich 320099 Consumable
N-Octanol Acros Organics 150630025 Consumable
Sorbitan-Mono-oleate Sigma-Aldrich S6760 Consumable
Potassium Hydroxide Sigma-Aldrich P1767 Consumable
Acetone Fisher Scientific L-4859 Consumable
Ethanol Sigma-Aldrich 270741 Consumable
Trinitro Benzenesulfonic Acid Sigma-Aldrich P2297 Consumable
Hydrochloric Acid Sigma-Aldrich 320331 Consumable
Ethyl Ether Sigma-Aldrich 472-484 Consumable
8-μm Tissue Culture Plate Inserts BD Biosciences 353097 Consumable
1.5-ml Microcentrifuge Tubes Fisher 05-408-129 Consumable
MTT Reagent Invitrogen M6494 Consumable
Dimethyl Sulfoxide Sigma-Aldrich D8779 Consumable
Qtracker Cell Labeling Kit (Q tracker 655) Molecular probes Q2502PMP Consumable
Type 1 Collagen Travigen 3447-020-01 Consumable
Sodium Hydroxide Sigma-Aldrich S8045 Consumable
12-Well Tissue Culture Plates BD Biosciences 353043 Consumable
Centrifuge Eppendorf 5417R Equipment
Orbital Shaker New Brunswick Scienctific C24 Equipment
Humidified Incubator with Air-5% CO2 Thermo Scientific Model 370 Equipment
Overhead Stirrer IKA Visc6000 Equipment
Magnetic Stirrer Corning PC-210 Equipment
Vacuum Desiccator Equipment
Particle Size Analyzer Malvern STP2000 Spraytec Equipment
Water Bath Fisher Scientific Isotemp210 Equipment
Spectrophotometer Beckman Beckman Coulter DU800UV/Visible Spectrophotometer Equipment
Vortex Diagger 3030a Equipment
Microplate Reader Molecular Devices SpectraMax M2 Equipment
Light/Fluorescence Microscope Olympus IX71 Equipment
Confocal Microscope Olympus FV-500 Laser Scanning Confocal Microscope Equipment
Scanning Electron Microscope Carl Zeiss MicroImaging Leo 435 VP Equipment
Transmission Electron Microscope JEOL JEOL 1230 Equipment

Referências

  1. Krampera, M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone. 39, 678-683 (2006).
  2. Patrick, C. W. Tissue engineering strategies for adipose tissue repair. Anat. Rec. 263, 361-366 (2001).
  3. Pountos, I., Giannoudis, P. V. Biology of mesenchymal stem cells. Injury. 36, S8-S12 (2005).
  4. Kim, I. Y. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26, 1-21 (2008).
  5. Shi, C. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res. 133, 185-192 (2006).
  6. Natesan, S. Adipose-derived stem cell delivery into collagen gels using chitosan microspheres. Tissue Eng. Part. A. 16, 1369-1384 (2010).
  7. Bubnis, W. A., Ofner, C. M. The determination of epsilon-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid. Anal. Biochem. 207, 129-133 (1992).
  8. Bornstein, M. B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest. 7, 134-137 (1958).
  9. Benoit, D. S. Integrin-linked kinase production prevents anoikis in human mesenchymal stem cells. J. Biomed. Mater. Res. A. 81, 259-268 (2007).
  10. Nuttelman, C. R., Tripodi, M. C., Anseth, K. S. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol. 24, 208-218 (2005).
  11. Shanmuganathan, S. Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydr. Polym. 73, 201-211 (2008).
  12. Haque, T., Chen, H., Ouyang, W., Martoni, C., Lawuyi, B., Urbanska, A., Prakash, S. Investigation of a new microcapsule membrane combining alginate, chitosan, polyethylene glycol and poly-L-lysine for cell transplantation applications. Int. J. Artif. Organs. 28, 631-637 (2005).
  13. Goren, A., Dahan, N., Goren, E., Baruch, L., Machluf, M. Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J. 24, 22-31 (2010).
  14. Zielinski, B. A., Aebischer, P. Chitosan as a matrix for mammalian cell encapsulation. Biomaterials. 15, 1049-1056 (1994).
  15. Girandon, L., Kregar-Velikonja, N., Božikov, K., Barliç, A. In vitro Models for Adipose Tissue Engineering with Adipose-Derived Stem Cells Using Different Scaffolds of Natural Origin. Folia Biol. (Praha). 57, 47-56 (2011).
  16. Baruch, L., Machluf, M. Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers. 82, 570-579 (2006).
  17. Wei, Y., Gong, K., Zheng, Z., Wang, A., Ao, Q., Gong, Y., Zhang, X. Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J. Mater. Sci. Mater. Med. , (2011).
  18. Wang, Q., Jamal, S., Detamore, M. S., Berkland, C. PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J. Biomed. Mater. Res. A. 96, 520-527 (2011).
  19. Alves da Silva, M. L., Martins, A., Costa-Pinto, A. R., Correlo, V. M., Sol, P., Bhattacharya, M., Faria, S., Reis, R. L., Neves, N. M. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen. Med. , (2010).
  20. Kang, Y. M., Lee, B. N., Ko, J. H., Kim, G. H., Kang, K. N., Kim da, Y., Kim, J. H., Park, Y. H., Chun, H. J., Kim, C. H., Kim, M. S. In vivo biocompatibility study of electrospun chitosan microfiber for tissue engineering. Int. J. Mol. Sci. 11, 4140-4148 (2010).
  21. Bozkurt, G., Mothe, A. J., Zahir, T., Kim, H., Shoichet, M. S., Tator, C. H. Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat. Neurosurgery. 67, 1733-1744 (2010).
  22. Leipzig, N. D., Wylie, R. G., Kim, H., Shoichet, M. S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials. 32, 57-64 (2011).
  23. Altman, A. M., Gupta, V., Ríos, C. N., Alt, E. U., Mathur, A. B. Adhesion, migration and mechanics of human adipose-tissue-derived stem cells on silk fibroin-chitosan matrix. Acta Biomater. 6, 1388-1397 (2010).
  24. Altman, A. M., Yan, Y., Matthias, N., Bai, X., Rios, C., Mathur, A. B., Song, Y. H., Alt, E. U. IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells. 27, 250-258 (2009).
  25. Machado, C. B., Ventura, J. M., Lemos, A. F., Ferreira, J. M., Leite, M. F., Goes, A. M. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells. Biomed. Mater. 2, 124-131 (2007).
check_url/pt/3624?article_type=t

Play Video

Citar este artigo
Zamora, D. O., Natesan, S., Christy, R. J. Constructing a Collagen Hydrogel for the Delivery of Stem Cell-loaded Chitosan Microspheres. J. Vis. Exp. (64), e3624, doi:10.3791/3624 (2012).

View Video