Summary

Micropunching为微型和亚微米模式聚合物基板上生成的光刻

Published: July 02, 2012
doi:

Summary

开发一个micropunching光刻方法产生微观和亚微米图案,顶部,侧壁和底部表面的聚合物基板。它克服了图案化导电聚合物和产生侧壁模式的障碍。这种方法允许多个功能快速制作和侵略性的化学自由。

Abstract

导电聚合物已引起高度重视,因为高电导率掺杂聚乙炔的发现在1977年1。他们提供的优势,重量轻,易于剪裁的物业和广泛的应用2,3。由于导电聚合物对环境条件的敏感性(如空气,氧气,水分,高温和化学解决方案),平版印刷技术呈现显着的技术挑战,这些材料4时。例如,当前的光刻方法,如紫外线(紫外线),是不适合图案的导电聚合物,由于潮湿和/或干蚀刻方法在这些过程的参与。此外,目前微/纳米系统主要有平面形式5,6。是建立在另一层制作功能表面层结构。这些结构的多层次堆叠在一起,形成众多设备一个共同的基板。微观结构的侧壁表面没有被用于构建设备。另一方面,侧壁模式可以使用,例如,建立3-D电路,修改流体通道和纳米线和纳米管的水平直接增长。

一个macropunching方法已广泛应用于制造业,创造了一百多年的钣金macropatterns。这种方法的启发,我们已经开发了1 micropunching光刻法(MPL)的图案,以克服的障碍,导电聚合物和生成侧壁模式。对MPL像macropunching方法,还包括两个操作( 图1):(一)切割;及(ii)绘图。 “切割”操作模式3导电聚合物聚吡咯,聚(3,4 – ethylenedioxythiophen) -聚(4 styrenesulphonate)(PEDOT薄膜)和聚苯胺(PANI)。也有人雇用创建阿尔微观7。湿度8,8,化学和葡萄糖传感器9已被用作制造导电聚合物的微观结构。已采用铝结合的微观结构和导电聚合物电容和各种异质9,10,11编造。 “切割”操作也适用于生成亚微米级模式,如100 – 500纳米宽的聚吡咯生产线以及100纳米范围内的金线。 “图纸”操作受聘为两个应用程序:(一)生产高密度聚乙烯(HDPE)可以用来建立三维微12,13,14渠道凹侧壁模式,及(ii)制备聚二甲基硅氧烷(PDMS)micropillars高密度聚乙烯基材上,以增加接触角的通道15。

Protocol

A. MPL的原理图 macropunching方法包括“节流”和“图纸”操作。 “切割”操作采用锋利的凸结构的模具,包括三个基本步骤( 图1(A1-A3))。首先,放置在一个刚性基板金属板材( 图1(A1))。第二,把由高力硅模具身体接触和基板。在这第二个步骤,直接下凸模结构的金属部分,首先从邻近的金属切断凸模结构,然后推下在基板上的凹图案的底部( …

Discussion

故障排除信息:临界点,就产生导电聚合物和金属使用“切割”操作单和多层微图案:(1)压印温度,确保产生最佳效果的聚甲基丙烯酸甲酯的中间层的流动性。明智的做法是在下限范围内开始,并逐渐增加温度,如果没有达到预期的效果。温度过高可能会导致导电聚合物层,以改变其化学和/或电气性能。 (2)如果压印力过高,可能会导致硅模具,以打击在压印;而低力量可能导?…

Declarações

The authors have nothing to disclose.

Acknowledgements

通过NSFDMI-0508454,国家科学基金会/ LEQSF(2006)镑-53,NSF的CMMI-0811888,和NSF的CMMI-0900595赠款,支持这项工作的一部分。

Materials

Name of the reagent Company Catalogue number Comments
PMMA Sigma-Aldrich Co. 495C9 The solvent is cholorobenzene. Handle PMMA solution under a fume hood with adequate ventilation. Do not breathe the vapor. Refer to MSDS for safe handling instructions.
PPy Sigma-Aldrich Co. 5% by weight in water. Used as received.
PEDOT-PSS H. C. Starck Co. Baytron P HC V4 Proprietary solvent. Used as received.
SPANI Sigma-Aldrich Co. Water soluble form. Used as received.
Hot embossing machine JenoptikMikrotechnik Co. HEX 01/LT  
Sputter machine Cressington Co. 208HR  
FIB machine Zeiss Co. FIB Crossbeam 1540 XB  
Spin coater Headway Reseach Co. PWM32-PS-R790 Spinner System  
RIE machine Technics MicroRIE Co.  
Photoresist Shipley Co. S1813  
PDMS Dow Corning Sylgard 184 Silicone elastomer kit  
HDPE sheet US Plastic Incorporate  
PMMA sheet Cyro Co.  
Double-sided adhesive tape Scotch Co.  
Single-sided tape Delphon Co. Ultratape # 1310  
Glass micropipettes FHC Co. 30-30-1  
Clip Office Depot Co. Bulldog clip  
Humidifier Vicks Co. Filter free humidifier  

Referências

  1. Menon, R. Conducting polymers: Nobel Prize in Chemistry, 2000. Current Science. 79, 1632 (2000).
  2. Inzelt, G., Pineri, M., Schultze, J. W., Vorotyntsev, M. A. Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta. 45, 2403 (2000).
  3. Adhikari, B., Majumdar, S. Polymers in sensor applications. Progress in Polymer Science. 29, 699 (2004).
  4. Chakraborty, A., Liu, X., Parthasarathi, G., Luo, C. An intermediate-layer lithography method for generating multiple microstructures made of different conducting polymers. Microsystem Technologies. 13 (8), 1175 (2007).
  5. Madou, M. . Fundamentals of Microfabrication. , (1995).
  6. Bustillo, J. M., Howe, R. T., Muller, R. S. Surface micromachining for microelectromechanical systems. Proceedings of the IEEE. 86, 1552 (1998).
  7. Liu, X., Luo, C. Intermediate-layer lithography for producing metal micropatterns. Journal of Vacuum Science and Technology B. 25, 677 (2007).
  8. Chakraborty, A., Luo, C. Multiple conducting polymer microwire sensors. Microsystem Technologies. 15, 1737 (2009).
  9. Chakraborty, A., Liu, X., Luo, C., Mason, E. C., Weber, A. P. . Polypyrrole: A new patterning approach and applications. Polypyrrole: Properties, Performance and Applications. , (2011).
  10. Poddar, R., Luo, C. A novel approach to fabricate a PPy/p-type Si heterojunction. Solid-State Electronics. 50, 1687 (2006).
  11. Liu, X., Chakraborty, A., Luo, C., Martingale, J. P. . Generation of all-polymeric diodes and capacitors using an innovative intermediate-layer lithography. Progress in Solid State Electronics Research. , 127-139 (2008).
  12. Liu, X., Luo, C. Fabrication of Au sidewall micropatterns using a Si-reinforced PDMS mold. Sensors and Actuators A. 152, 96 (2009).
  13. Liu, X., Chakraborty, A., Luo, C. Fabrication of micropatterns on the sidewalls of a thermal shape memory polystyreme block. Journal of Micromechanics and Microengineering. 20, 095025 (2010).
  14. Chakraborty, A., Liu, X., Luo, C. Fabrication of micropatterns on channel sidewalls using strain-recovery property of a shape-memory polymer. Sensors and Actuators A. , (2011).
  15. Liu, X., Luo, C. Fabrication of supe-hydrophobic channels. Journal of Micromechanics and Microengineering. 20, 25029 (2010).
  16. Luo, C., Meng, F., Liu, X., Guo, Y. Reinforcement of PDMS master using an oxide-coated silicon plate. Microelectronics Journal. 37, 5 (2006).
  17. Luo, C., Garra, J., Schneider, T., White, R., Currie, J., Paranjape, M. Thermal ablation of PMMA for water release using a microheater. Sensors and Actuators A. 114, 123 (2004).
check_url/pt/3725?article_type=t

Play Video

Citar este artigo
Chakraborty, A., Liu, X., Luo, C. Micropunching Lithography for Generating Micro- and Submicron-patterns on Polymer Substrates. J. Vis. Exp. (65), e3725, doi:10.3791/3725 (2012).

View Video