Summary

过敏原诱发的哮喘小鼠模型

Published: May 14, 2012
doi:

Summary

过敏性哮喘的实验小鼠模型为研究疾病的发病机制和开发新疗法提供了新的可能性。这些模型非常适合过敏的免疫反应,呼吸道炎症,肺的病理生理测量因素。

Abstract

哮喘是一种发病率和死亡率的重要原因,影响约300万世界各地的人们。1超过8%的美国人口有气喘病,患病率增加。与其他疾病,呼吸道过敏性疾病的动物模型,极大地方便2基本病理生理学的了解,有助于确定潜在的治疗靶点,并允许可能的新疗法的临床试验。在几种动物模型过敏性气道疾病已开发,但小鼠模型特别有吸引力,由于成本低,随时可用,和良好的特点,这些动物的免疫系统。3多种转基因株系的可用性进一步提高吸引力这些模型。在这里,我们描述了两种小鼠模型过敏性气道疾病,无论是用人卵清蛋白作为抗原。腹腔注射致敏的初始模型,一个交付ERS的雾化,气管内交付的其他抗原的挑战。这两种模式提供优势互补,相互模仿人类哮喘的主要特征。

哮喘急性发作的主要功能包括夸张的气道反应,如乙酰胆碱(气道高反应性,AHR)刺激和丰富的嗜酸性粒细胞气道炎症。这些也都是过敏原的挑战突出的影响,在我们的小鼠模型,5,6和我们描述了测量他们的技术,从而评价实验操作的影响。具体来说,我们描述都测量气道高反应性,以及评估到气管和肺的炎性细胞浸润的方法7侵入和非侵入性技术。收集支气管肺泡气道炎症细胞,而肺组织病理是用来评估整个器官的炎症标志物。这些技术提供强大的工具,学习的方式,将不会在人类可能哮喘。

Protocol

一,过敏原致敏和挑战( 见图1) 答:对于气管挑战初步敏,雄性或雌性C57BL / 6,BALB / c小鼠(6-8周龄)腹腔0天,第7天再次注入20微克的卵(卵,Sigma-Aldrich公司,圣路易斯,密苏里州)乳化0.2毫升无菌磷酸盐缓冲液(PBS)含有2毫克氢氧化铝(Sigma-Aldrich公司)或2毫克,氢氧化铝0.2毫升无菌作为对照PBS。 适当的挑战与抗原(例如,14天,16,18,20)。?…

Discussion

呼吸道过敏性疾病的动物模型,为临床哮喘的相关研究提供了重要的工具。许多不同的机型,采用不同的物种和抗原,已被开发出来。鼠标,一个有吸引力的和常用的实验室物种,也为呼吸道过敏性疾病模型提供了优势。9,10虽然这种模式不模仿在各方面的哮喘,11与慢性疾病方面是特别困难的重现, 12,13我们确认这里,许多主要功能是复制。我们还表明,在人类哮喘,这?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院资助HL093196(RCR)和亚特兰大研究和教育基金会(于AREF)支持。

Materials

Material Name Company Catalogue Number Comments
Ovalbumin Sigma-Aldrich
St. Louis, MO
A5503  
Aluminum hydroxide Sigma-Aldrich 239186  
Acetyl-β-methylcholine chloride Sigma-Aldrich A2251  
Pentobarbital sodium salt Sigma-Aldrich P3761  
Whole body plethysmography
(WBP) system
Buxco Research Systems
Wilmington, NC
  http://www.buxco.com
FlexiVent SCIREQ, Inc.
Montreal, Canada
  http://www.scireq.com
Light microscope Leica Microsystems, Inc.
Buffalo Grove, IL
   
Cytospin 4 Thermo Scientific
Asheville, NC
   
Diff-Quick stain Siemens
Newark, DE
B4132-1A  
Repetitive pipette Tridak
Torrington, CT
STP4001-0025  

Referências

  1. Braman, S. S. The global burden of asthma. Chest. 130, 4S-12S (2006).
  2. Akinbami, L. J., Mooman, J. E., Liu, X. Asthma Prevalence, Health Care Use, and Mortality: 2005-2009. National Health Statistics Reports. 32, 2005-2009 (2011).
  3. Bates, J. H., Rincon, M., Irvin, C. G. Animal models of asthma. Am. J. Physiol. Lung. Cell. Mol. Physiol. 297, 401-410 (2009).
  4. Drazen, J. M., Finn, P. W., De Sanctis, G. T. Mouse models of airway responsiveness: physiological basis of observed outcomes and analysis of selected examples using these outcome indicators. Annu. Rev. Physiol. 61, 593-625 (1999).
  5. Epstein, M. M. Do mouse models of allergic asthma mimic clinical disease. Int. Arch. Allergy Immunol. 133, 84-100 (2004).
  6. Blyth, D. I., Pedrick, M. S., Savage, T. J., Hessel, E. M., Fattah, D. Lung inflammation and epithelial changes in a murine model of atopic asthma. Am. J. Respir. Cell Mol. Biol. 14, 425-438 (1996).
  7. Martin, T. R., Gerard, N. P., Galli, S. J., Drazen, J. M. Pulmonary responses to bronchoconstrictor agonists in the mouse. J. Appl. Physiol. 64, 2318-2323 (1988).
  8. Hamelmann, E. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med. 156, 766-775 (1997).
  9. Gelfand, E. W. Pro: mice are a good model of human airway disease. Am. J. Respir. Crit. Care Med. 166, 5-8 (2002).
  10. Shapiro, S. D. Animal models of asthma: Pro: Allergic avoidance of animal (model[s]) is not an option. Am. J. Respir. Crit. Care Med. 174, 1171-1173 (2006).
  11. Zosky, G. R. Ovalbumin-sensitized mice are good models for airway hyperresponsiveness but not acute physiological responses to allergen inhalation. Clin. Exp. Allergy. 38, 829-838 (2008).
  12. Nials, A. T., Uddin, S. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis. Model. Mech. 1, 213-220 (2008).
  13. Wenzel, S., Holgate, S. T. The mouse trap: It still yields few answers in asthma. Am. J. Respir. Crit. Care Med. 174, 1173-1178 (2006).
  14. Rayamajhi, M. Non-surgical Intratracheal Instillation of Mice with Analysis of Lungs and Lung Draining Lymph Nodes by Flow Cytometry. J. Vis. Exp. (51), e2702 (2011).
  15. Swedin, L. Comparison of aerosol and intranasal challenge in a mouse model of allergic airway inflammation and hyperresponsiveness. Int. Arch. Allergy Immunol. 153, 249-258 (2010).
  16. Gueders, M. M. Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflamm. Res. 58, 845-854 (2009).
  17. Zhu, W., Gilmour, M. I. Comparison of allergic lung disease in three mouse strains after systemic or mucosal sensitization with ovalbumin antigen. Immunogenetics. 61, 199-207 (2009).
  18. Flandre, T. D., Leroy, P. L., Desmecht, D. J. Effect of somatic growth, strain, and sex on double-chamber plethysmographic respiratory function values in healthy mice. J. Appl. Physiol. 94, 1129-1136 (2003).
  19. Hoymann, H. G. Invasive and noninvasive lung function measurements in rodents. J. Pharmacol. Toxicol. Methods. 55, 16-26 (2007).
  20. Chong, B. T., Agrawal, D. K., Romero, F. A., Townley, R. G. Measurement of bronchoconstriction using whole-body plethysmograph: comparison of freely moving versus restrained guinea pigs. J. Pharmacol. Toxicol. Methods. 39, 163-168 (1998).
check_url/pt/3771?article_type=t

Play Video

Citar este artigo
Reddy, A. T., Lakshmi, S. P., Reddy, R. C. Murine Model of Allergen Induced Asthma. J. Vis. Exp. (63), e3771, doi:10.3791/3771 (2012).

View Video