Summary

一个循序渐进的步骤方法的到Nanodisc脂质颗粒的ABC转运蛋白的重组

Published: August 31, 2012
doi:

Summary

奈米圆盘是小盘状颗粒结合成一小片的磷脂双分子层膜蛋白。我们提供了一个可视化的协议,一步一步注册成立的MalFGK2转运到光盘。

Abstract

nanodisc是一个圆盘状的颗粒(〜10-12纳米大),成一小片的磷脂双分子层的陷阱膜蛋白。该nanodisc的研究,尤其是膜蛋白的配体 – 受体相互作用的上下文中的一个特别有吸引力的选择。该方法率先由Sligar和同事的两亲性质的基础上设计高度α-螺旋支架蛋白载脂蛋白A1来自。支架蛋白的疏水性表面的相互作用与脂肪酰基侧链的脂双层,而极性的区域面对的含水环境。奈米圆盘膜蛋白的分析有显着的优势脂质体,因为颗粒是小的,均匀的和水溶性的。此外,通常保留以可溶性蛋白的生物化学和生物物理的方法可以被应用,并从膜的任一侧。在这种可视化的协议,我们提出了一个一步一步的重组的良好特征在于细菌ABC转运,男性,MalFGK的的2复杂。在盘的形成是一个自组装过程中,依赖于疏水相互作用发生期间逐步除去洗涤剂。我们描述的基本步骤,我们强调的重要性选择正确的蛋白质 – 类脂比,以限制形成的聚集体和较大的多分散性的脂质体样颗粒。简单的质量控制,例如凝胶过滤色谱法,天然凝胶电泳和动态光散射光谱,确保光盘已正确重组。

Protocol

整体重建过程重整过程开始用纯化的MalFGK 2复合物中的洗涤剂溶解的磷脂存在下通过混合膜支架蛋白(MSP)。该步骤之后是由吸附剂的聚苯乙烯材料称为生物珠或Amberlite( 图1),由缓慢除去洗涤剂。的自动装配过程的发生是最有可能的,因为非极性疏水磷脂,的MalFGK 2配合物和表面的两亲性的MSP蛋白之间的相互作用。最终产物是一种盘状的颗粒…

Discussion

我们描述了一个简单的程序,重组的麦芽糖转运到奈米圆盘。转运体ATPase活性和与可溶性的结合配偶体的男性的相互作用( 图3)可以重新创建。成功重组的转运到奈米圆盘开启方式为更多的生物物理和生物化学分析。特别令人感兴趣的是系统的分析MalK ATP酶和麦芽糖运输活动的清洁剂,脂质体和奈米圆盘。 ABC转运过程中改变构象的运输周期,但脂质,这些构象变化的贡献仍有待探讨…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由加拿大健康研究学会的支持。 CSC是由一个从自然科学和工程研究理事会,加拿大博士后奖学金。 FD是Tier II加拿大研究主席。

Materials

Name of the reagent Company Catalogue number Comments
Amicon Ultra-4 50K centrifugal filter Millipore UFC805008 Follow manufacturer’s protocol for proper use
Bio-Beads SM-2 Adsorbent Bio-Rad 152-3920
E. coli total lipids Avanti Polar Lipids 100500C Dissolved in chloroform, handle as appropriate for an organic solvent
Ni sepharose HP resin GE Healthcare 17-5268-01
Phosphorous standard solution Sigma-Aldrich P3869
pMSP1D1 Addgene 20061
Superdex 200 HR 10/300 GE Healthcare 17-5172-01
Table I. Specific reagents.
Name Composition Comments
DDM stock 10% w/v DDM Resuspend in milliQ water and store at -20 °C
MalFGK2 stock 1-2 mg/ml
50 mM Tris-HCl, pH7.9
100 mM NaCl
10% v/v glycerol
0.03% w/v DDM
Store at -70 °C after purification
MSP stock 10-15 mg/ml
50 mM Tris-HCl, pH7.9
100 mM NaCl
10% v/v glycerol
Store at -70 °C after purification in <1 ml aliquots and avoid excessive freeze/thaw cycles
Phospholipid stock 5 nM E. coli total lipids
0.5% w/v (10 mM) DDM
50 mM Tris-HCl, pH 7.9
50 mM NaCl
Store at 4 °C for 1 week
TS buffer 50 mM Tris-HCl, pH 7.9
50 mM NaCl
Store at 4 °C
TSG10 buffer 50 mM Tris-HCl, pH7.9
100 mM NaCl
10% v/v glycerol
Store at 4 °C
TSG20 buffer 50 mM Tris-HCl, pH8
100 mM NaCl
20% v/v glycerol
Store at 4 °C
TSGD buffer 50 mM Tris-HCl, pH7.9
100 mM NaCl
10% v/v glycerol
0.03% w/v DDM
Store at 4 °C and add DDM just before use

Table II. Solution recipes.

Referências

  1. Denisov, I. G., Ginkova, Y. V., Lazarides, A. A., Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477-3487 (2004).
  2. Boldog, T., Grimme, S., Li, M., Sligar, S. G., Hazelbauer, G. L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl. Acad. Sci. USA. 103, 11509-11514 (2006).
  3. Bass, B. J., Denisov, I. G., Sligar, S. G. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. J. Biol. Chem. 282, 7066-7076 (2007).
  4. Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G., Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995-2004 (2007).
  5. Mi, L. -. Z., Grey, M. J., Nishida, N., Walz, T., Lu, C., Springer, T. A. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs. Bioquímica. 47, 10314-10323 (2008).
  6. Schägger, H., Cramer, W. A., von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220-230 (1994).
  7. Dalal, K., Duong, F. Reconstitution of the SecY translocon in Nanodiscs. Methods Mol. Biol. 619, 145-156 (2010).
  8. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., Candia, O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95-97 (1979).
  9. Davidson, A. L., Dassa, E., Orelle, C., Chen, J. Structure, function and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317-364 (2008).
  10. Bordignon, E., Grote, M., Schneider, E. The maltose ATP-binding cassette transporter in the 21st century-towards a structural dynamic perspective on its mode of action. Mol. Microbiol. 77, 1354-1366 (2010).
  11. Alvarez, F. J., Orelle, C., Davidson, A. L. Functional reconstitution of an ABC transporter for use in electron paramagnetic resonance spectroscopy. J. Am. Chem. Soc. 132, 9513-9515 (2010).
  12. Ritchie, T. K., Grinkova, Y. V., Bayburt, T. H., Denisov, I. G., Zolnerciks, J. K., Atkins, W. M., Sligar, S. G. Reconstitution of membrane proteins in phospholipid bilayer Nanodiscs. Methods Enzymol. 464, 211-231 (2009).
  13. Glück, J. M., Koenig, B. W., Willbold, D. Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal. Biochem. 408, 46-52 (2011).
  14. Wan, C. -. P. L., Chiu, M. H., Wu, X., Lee, S. K., Prenner, E. J., Weers, P. M. M. Apolipoprotein-induced conversion of phosphatidylcholine bilayer vesicles into nanodisks. Biochim. Biophys. Acta (BBA). 1808, 606-613 (2011).
  15. Nath, A., Trexler, A. J., Koo, P. K., Miranker, A. D., Atkins, W. M., Rhoades, E. Single-molecule fluorescence spectroscopy using phospholipid bilayer Nanodiscs. Methods Enzymol. 472, 89-117 (2010).
  16. Denisov, I. G., Sligar, S. G. Cytochromes P450 in Nanodiscs. Biochim. Biophys. Acta. 1814, 223-229 (2011).
  17. Zhang, X. X., Chan, C. S., Bao, H., Fang, Y., Foster, L. J., Duong, F. Nanodiscs and SILAC-based mass spectrometry to identify a membrane protein interactome. J. Proteome Res. , (2011).
check_url/pt/3910?article_type=t

Play Video

Citar este artigo
Bao, H., Duong, F., Chan, C. S. A Step-by-step Method for the Reconstitution of an ABC Transporter into Nanodisc Lipid Particles. J. Vis. Exp. (66), e3910, doi:10.3791/3910 (2012).

View Video