Summary

复制和β细胞功能评估Adenovirally转分离的啮齿动物胰岛

Published: June 25, 2012
doi:

Summary

该协议允许一个确定调节功能的β细胞质量的因素,找到治疗糖尿病的潜在的治疗靶点。该协议包括一个精简的方法来评估胰岛细胞复制和β细胞功能,在离体大鼠胰岛细胞与腺病毒基因表达操纵。

Abstract

主要是葡萄糖稳态控制的内分泌激素的胰岛素和胰高血糖素,胰岛β和α细胞分泌,分别。功能的β细胞质量是决定解剖β细胞质量以及β细胞的能力,以应对营养负荷。一个丧失功能的β细胞质量是中心1-3糖尿病的两种主要形式。而下降功能的β细胞自身免疫性1型糖尿病发作的质量结果,在2型糖尿病,这一递减的发展都无法适当分泌胰岛素的β细胞和β细胞的破坏从干部机制。因此,努力恢复功能的β细胞质量更好的治疗和糖尿病的潜在治疗至关重要。

正在努力找出刺激的复制和增强β细胞的功能,可以利用的分子途径。理想的情况下,治疗的目标,同时提高β细胞的生长和功能。也许更重要的虽然是一种策略,刺激β细胞的生长,以确定是否损害的β细胞功能(如某些癌基因),反之亦然成本。

由系统抑制或过度在离体大鼠胰岛靶基因的表达,可以增加功能的β细胞质量4-6找出潜在的治疗靶点。腺病毒载体可有效地过度或击倒蛋白在离体大鼠胰岛4,7-15就业。在这里,我们提出了一种方法来操纵利用腺病毒转导的基因表达和评估胰岛复制,并在离体大鼠胰岛β细胞功能( 图1)。这种方法已经被以前使用,以确定新的目标,调节β细胞复制或功能5,6,8,9,16,17。

Protocol

1。腺病毒介导和培养大鼠胰岛准备加入所需数量的2毫升(载8毫米葡萄糖,10%胎牛血清,50个单位/ ml青霉素,50μg/ mL链霉素的RPMI 1640培养媒体)媒体6以及非组织文化的涂层板井。例如,一个典型的实验可能需要三口井 – 一个无病毒控制,病毒控制(例如,表达GFP的腺病毒),实验组。 暖板放置到组织文化的孵化器,为至少30分钟至37°C。 紧随6以及非组织文化的涂层板个别?…

Discussion

建立通路,可调制刺激的复制和增强β细胞的功能有关糖尿病的两个主要形式。因为功能的β细胞质量是依赖胰岛素​​分泌细胞的存在和功能上,评估这些因素,同时有它的优势。这个协议描述为确定一种蛋白质的过度表达或抑制是否会导致功能的β细胞质量的变化, 在体外培养 ,然后可以测试体内疗效的精简协议。

这个协议的一个限制是,胰岛是一种微型器…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是格兰特DK078732支持由美国国立卫生研究院(的PTF)。

Materials

Name of the reagent Company Catalogue number Comments
RPMI 1640 media Gibco 11879  
Penicillin/streptomycin Gibco 15140  
6-well plate BD-Falcon 35-1146 Non-TC treated
[methyl-3H]-thymidine Perkin Elmer NET027Z001MC 1 mCi/ml
Micro-centrifuge tubes Denville C2170 1.7 ml
NaCl Sigma 59888  
KCl Acros 42409  
KH2PO4 Acros 20592  
MgSO4 Acros 41348  
CaCl2 Acros 34961  
HEPES Sigma H0887 1 M solution
35% BSA Sigma A7979  
NaHCO3 Acros 42427  
d-glucose Sigma G8769  
TCA Fisher Scientific SA9410-1 10% w/v
NaOH Acros 12426  
Scintillation counting tube Sarstedt 58.536 7 ml, PP
Scintillation counting tube cap Sarstedt 65.816  
Econo-Safe counting cocktail RPI 111175  
Insulin RIA Siemens TKIN2  
BCA Assay Kit Thermo Scientific 23250  
      Equipment
Centrifuge Eppendorf 5415R  
Scintillation counting tube rack Sarstedt 93.1431.001  
Liquid scintillation counter Perkin Elmer Tri-Carb 2910TR  

Referências

  1. Ferrannini, E. beta-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J. Clin. Endocrinol. Metab. 90, 493-500 (2005).
  2. Weyer, C., Bogardus, C., Mott, D. M., Pratley, R. E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 104, 787-794 (1999).
  3. Keenan, H. A. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 59, 2846-2853 (2010).
  4. Bain, J. R., Schisler, J. C., Takeuchi, K., Newgard, C. B., Becker, T. C. An adenovirus vector for efficient RNA interference-mediated suppression of target genes in insulinoma cells and pancreatic islets of langerhans. Diabetes. 53, 2190-2194 (2004).
  5. Fueger, P. T. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function. Mol. Endocrinol. 22, 1251-1259 (2008).
  6. Schisler, J. C. Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1. Mol. Cell Biol. 28, 3465-3476 (2008).
  7. Chan, C. B. Overexpression of uncoupling protein 2 inhibits glucose-stimulated insulin secretion from rat islets. Diabetes. 48, 1482-1486 (1999).
  8. Cozar-Castellano, I., Takane, K. K., Bottino, R., Balamurugan, A. N., Stewart, A. F. Induction of beta-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of cyclin-dependent kinase-4 and cyclin D1. Diabetes. 53, 149-159 (2004).
  9. Icyuz, M. Adenovirus infection activates akt1 and induces cell proliferation in pancreatic islets1. Transplantation. 87, 821-824 (2009).
  10. Kaneto, H. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J. Biol. Chem. 276, 31099-31104 (2001).
  11. Antinozzi, P. A., Berman, H. K., O’Doherty, R. M., Newgard, C. B. Metabolic engineering with recombinant adenoviruses. Annu. Rev. Nutr. 19, 511-544 (1999).
  12. Newgard, C. B., Becker, T. C., Berman, H. K., O’Doherty, R. M. Regulation of overexpressed hexokinases in liver and islet cells. Biochem. Soc. Trans. 25, 118-122 (1997).
  13. Becker, T. C., BeltrandelRio, H., Noel, R. J., Johnson, J. H., Newgard, C. B. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels. J. Biol. Chem. 269, 21234-21238 (1994).
  14. Csete, M. E. Adenoviral-mediated gene transfer to pancreatic islets does not alter islet function. Transplant Proc. 26, 756-757 (1994).
  15. Csete, M. E. Efficient gene transfer to pancreatic islets mediated by adenoviral vectors. Transplantation. 59, 263-268 (1995).
  16. Meng, Z. X. Activation of liver X receptors inhibits pancreatic islet beta cell proliferation through cell cycle arrest. Diabetologia. 52, 125-135 (2009).
  17. Ronnebaum, S. M. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J. Biol. Chem. , (2006).
  18. Milburn, J. L. Pancreatic beta-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J. Biol. Chem. 270, 1295-1299 (1995).
  19. Szot, G., Koudria, P., Bluestone, J. Murine Pancreatic Islet Isolation. J. Vis. Exp. (7), e255 (2007).
check_url/pt/4080?article_type=t

Play Video

Citar este artigo
Fueger, P. T., Hernandez, A. M., Chen, Y., Colvin, E. S. Assessing Replication and Beta Cell Function in Adenovirally-transduced Isolated Rodent Islets. J. Vis. Exp. (64), e4080, doi:10.3791/4080 (2012).

View Video