Summary

FRET显微镜在活细胞单分子生物传感器的信号事件的实时监测

Published: August 20, 2012
doi:

Summary

福斯特共振能量转移(FRET)显微镜是一种功能强大的技术,使用各种生物传感器记者在活细胞中的信号转导事件的实时监控。在这里,我们将介绍如何建立一个自定义的表面荧光共振成像系统从商业上可用的组件和如何使用它的FRET实验。

Abstract

福斯特共振能量转移(FRET)显微镜将继续作为一个在活细胞和组织的生化事件和信号的实时监控技术获得越来越多的关注。与传统的生化方法相比,这种新技术的特点是高时空分辨率的。 FRET实验使用不同的基因编码的生物传感器,它可以表示随着时间的推移, 在现场在体内 1-2和成像。典型的生物传感器可以报告通过测量FRET的荧光团标记的对蛋白质或构象的变化,在一个单一的蛋白质窝藏景点3-4的分子与结合部分相互连接的供体和受体荧光团之间的蛋白质-蛋白质相互作用。蛋白质-蛋白质相互作用的双分子生物传感器包括,例如,构建设计用于监控电池单元5中的G-蛋白激活,而单 ​​分子传感器测量被广泛地用于图像的第二信使如钙6中,cAMP 7-8,肌醇磷酸盐9和cGMP 10-11一定的构象变化。在这里,我们将介绍如何建立一个定制的萤光共振成像系统,从单一的商业可用的组件,如何控制整个安装使用微管理器免费。这个简单但功能强大的仪器是专为在活细胞中的常规或更复杂的FRET测量。自写插件使用过程中的变化在FRET比在实时可视化图形格式被存储在任何实验之前获得的图像处理兼容内置的ImageJ的免费软件,用于后续的数据分析。这种低成本系统的特点是灵活性高,可以成功地用于监测各种的生化事件和信号分子提供了大量的共振生物传感器在活细胞和组织。作为一个例子,我们展示了ĤOW使用这种成像系统进行实时监控中cAMP现场293A细胞刺激后,与β-肾上腺素能受体激动剂和阻滞剂。

Protocol

1。建立一个共振成像显微镜原则上,任何倒置荧光显微镜,这是在实验中,有一个摄像头端口,可以适用于FRET成像。最后的安装应包括下列关键组成部分:一台显微镜,一个光源或无需额外的快门,以及一个CCD摄像头(参见图1)发射光的光束分离器,用于。的硬件设备,特别是光源,快门和相机被集成到由成像的图像采集和分析的软件,该软件允许控制。下面?…

Discussion

在该协议中,我们演示了如何构建一个简单的低成本但功能强大的共振成像系统可用的生物传感器具有多种常规应用。这里介绍的系统被设计为CFP和YFP,或类似类型的荧光蛋白,作为供体 – 受体对。与此同时,以及其他个人的生物传感器成为可用的,使用例如绿色和红色荧光蛋白14。为了适应所描述的系统为其他颜色,应选择适当的光源和/或过滤套。在LED,另一个单个LED的行的情况下,?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者要感谢安科Rüttgeroth和卡琳娜齐默尔曼的技术援助。这项工作得到了德意志研究联合会(授予NI 1301/1-1 VON)和德国哥廷根大学医学中心(“富利”授予VON)。

Materials

Name of the reagent/equipment Company Catalogue number Comments
BES Buffer Grade AppliChem A1062  
CaCl2 dihydrate Sigma-Aldrich C5010  
Glass coverslides Thermo Scientific 004710781 Diameter 24 mm
Glass-bottomed cell-culture dishes World Precision Instruments FD3510-100  
D-MEM medium Biochrom AG F0445  
Fetal calf serum (FCS) Thermo Scientific SH30073.02  
L-Glutamine Biochrom AG K0283  
HEPES Sigma H4034  
KCl Sigma P5405  
MgCl2 hexahydrate AppliChem A4425  
NaCl AppliChem A1149  
Na2HPO4 Sigma-Aldrich S9707  
Penicillin/Streptomycin Biochrom AG A2213  
Inverted fluorescent microscope e.g. Nikon Request at Nikon  
CoolLED CoolLED pE-100 440 nm
DualView Photometrics DV2-SYS  
DualView filter slider Photometrics 05-EM  
CFP/YFP filter set Chroma Technology 49052 without the emission filter
ORCA-03G camera Hamamatsu Photonics C8484-03G02  
Arduino I/O board Sparkfun Electronics DEV-00666  
Attofluor cell chamber Invitrogen A-7816  
Personal computer with WindowsXP or Windows7 system Any supplier   Include hard-drive with high capacity

Referências

  1. Zaccolo, M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ. Res. 94, 866-873 (2004).
  2. Mehta, S., Zhang, J. Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu. Rev. Biochem. 80, 375-401 (2011).
  3. Zhang, J., Campbell, R. E., Ting, A. Y., Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906-918 (2002).
  4. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell. 4, 295-305 (2003).
  5. Bunemann, M., Frank, M., Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. U.S.A. 100, 16077-16082 (2003).
  6. Kotlikoff, M. I. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J. Physiol. 578, 55-67 (2007).
  7. Willoughby, D., Cooper, D. M. Live-cell imaging of cAMP dynamics. Nat. Methods. 5, 29-36 (2008).
  8. Nikolaev, V. O., Lohse, M. J. Monitoring of cAMP synthesis and degradation in living cells. Physiology (Bethesda). 21, 86-92 (2006).
  9. Tanimura, A. Use of Fluorescence Resonance Energy Transfer-based Biosensors for the Quantitative Analysis of Inositol 1,4,5-Trisphosphate Dynamics in Calcium Oscillations. J. Biol. Chem. 284, 8910-8917 (2009).
  10. Nikolaev, V. O., Lohse, M. J. Novel techniques for real-time monitoring of cGMP in living cells. Handb. Exp. Pharmacol. , 229-243 (2009).
  11. Nausch, L. W., Ledoux, J., Bonev, A. D., Nelson, M. T., Dostmann, W. R. Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc. Natl. Acad. Sci. U.S.A. 105, 365-370 (2008).
  12. Borner, S. FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat. Protoc. 6, 427-438 (2011).
  13. Nikolaev, V. O., Bunemann, M., Hein, L., Hannawacker, A., Lohse, M. J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215-37218 (2004).
  14. Hong, K. P., Spitzer, N. C., Nicol, X. Improved molecular toolkit for cAMP studies in live cells. BMC Res. Notes. 4, 241-24 (2011).
  15. Niino, Y., Hotta, K., Oka, K. Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLoS One. 4, e6036 (2009).
  16. Palmer, A. E., Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1, 1057-1065 (2006).
  17. Brumbaugh, J., Schleifenbaum, A., Stier, G., Sattler, M., Schultz, C. Single- and dual-parameter FRET kinase probes based on pleckstrin. Nat. Protoc. 1, 1044-1055 (2006).
  18. Aoki, K., Matsuda, M. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nat. Protoc. 4, 1623-1631 (2009).
check_url/pt/4081?article_type=t

Play Video

Citar este artigo
Sprenger, J. U., Perera, R. K., Götz, K. R., Nikolaev, V. O. FRET Microscopy for Real-time Monitoring of Signaling Events in Live Cells Using Unimolecular Biosensors. J. Vis. Exp. (66), e4081, doi:10.3791/4081 (2012).

View Video