Summary

钮扣电池锂离子电池的建设和测试

Published: August 02, 2012
doi:

Summary

构建和测试钮扣电池的锂离子电池的协议描述。使工作电极,电极准备,手套箱内组装电池和测试细胞的具体程序。

Abstract

可充电锂离子电池,具有广泛的应用在电子,客户总是要求更多的能力和更长的使用寿命。锂离子电池也被认为是用于电动和混合动力汽车,1甚至电网稳定系统2。所有这些应用模拟在3-7电池材料,其中包括3,8新材料的研究和开发的急剧增加,掺杂,纳米构型10-13,涂层或表面改性14-17和新型粘合剂18。因此,越来越多的物理学家,化学家和材料科学家最近涉足这一领域。纽扣电池被广泛用于研究的实验室测试新的电池材料的研究和发展目标的大规模和高功率的应用,小钮扣电池通常用于测试的能力和速度能力在初始阶段的新材料。

在2010年,我们开始了国家科学基金会(NSF)资助的研究项目,以调查在电池材料表面吸附和无序(赠款。的DMR-1006515)。在这个项目的初始阶段,我们一直在努力学习钮扣电池,不能没有其他大学的其他研究人员通过频繁的电话,电子邮件交流和两个实地考察的许多帮助的情况下取得的组装和测试技术。因此,我们认为它是有益的,通过文字和视频记录,组装和测试一个钮扣电池,这将有助于在这一领域的其他新的研究协议。这方面的努力表示“更广泛的影响”我们的国家科学基金会项目活动,它也将帮助教育和启发学生。

在这部影片的文章,我们记录协议与1 酸锂的工作电极,李电极组装CR2032纽扣电池(大多常用)聚偏二氟乙烯(PVDF)粘结剂。为了确保新的学习者很容易重复的协议,我们作为具体和明确的,我们可以保持协议。然而,重要的是要注意,在具体的研究和开发工作,通过这里可以改变许多参数。首先,可以使不同大小的纽扣电池和一个反电极比李对测试工作电极。第二,碳黑色和粘合剂的金额加入到工作电极,以适应特定的研究目的往往不同,例如,大量的C或黑色甚至是惰性粉末添加到工作电极的“内在”性能测试正极材料14。第三,更好的粘合剂(比氟碳其他)还开发和使用18。最后,还可以用于其他类型的电解质(而不是6 LIPF),事实上,某些高电压的电极材料将需要特别electrol用途ytes 7。

Protocol

1。工作电极的制备准备一个混合物〜6重量。 %的聚偏二氟乙烯(PVDF)粘结剂在2-N-甲基吡咯烷酮(NMP)。 称量80 WT。 %活性物质(2)在这种情况下,钴酸锂和10 WT。 %C处的黑色(乙炔,99.9%),然后在1分钟的旋涡混合。 NMP-粘结剂混合物添加粘结剂等构成10 WT。 %的混合物的总重量。 上述混合物转移到一个小玻璃瓶,并在最高转速约30分钟的旋涡混合器?…

Discussion

根据我们的经验,在最关键的一步准备工作电极与一致性良好的泥浆。 如图4所示,多余的NMP的泥浆可以导致裂纹的涂料,而NMP的不足可能会导致一种多孔涂层。在这里介绍的工作,是在直径20毫米的CR2032钮扣电池的情况下使用。应当指出,不同大小的纽扣电池的情况下可以使用,其中应更改相应的电极大小。细胞大会期间,要使用适当的间隔取决于厚度的锂箔电极和细胞的高度。这?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们非常感谢美国国家科学基金会材料研究部从陶瓷计划的支持下,没有授予。的DMR-1006515(项目经理,的琳内特四博士马德森)。

Materials

Name of the reagent Company Catalogue number
Poly(vinylidene fluoride) Sigma-Aldrich 182702
1-Methyl-2-pyrrolidinone, 99.5% Alfa Aesar 31903
LiCoO2 Alfa Aesar 42090
Carbon black, acetylene, 99.9+% Alfa Aesar 39724
LiPF6 in EC:DMC:DEC MTI Corporation EQ-Be-LiPF6
Celgard separator Celgard C480
Analog Vortex Mixer VWR 58816-121
Vacuum oven    
Vacuum pump    
Hydraulic press    
Coin cell case MTI Corporation EQ-CR2032-CASE-304
Spring and spacer MTI Corporation EQ-CR20SprSpa-304
Glovebox mBraun UNILAB
Battery tester Arbin Instruments BT2143

Referências

  1. Cairns, E. J., Albertus, P. Batteries for Electric and Hybrid-Electric Vehicles. Annual Review of Chemical and Biomolecular Engineering. 1, 299-320 (2010).
  2. Dunn, B., Kamath, H., Tarascon, J. -. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 334, 928-935 (2011).
  3. Goodenough, J. B. Cathode materials: A personal perspective. J. Power Sources. 174, 996-1000 (2007).
  4. Yamada, A., Chung, S. C., Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical Society. 148, A224-A229 (2001).
  5. Whittingham, M. S. Lithium batteries and cathode materials. Chemical Reviews. 104, 4271-4301 (2004).
  6. Tarascon, J. M., Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature. 414, 359-367 (2001).
  7. Goodenough, J. B., Kim, Y. Challenges for Rechargeable Li Batteries. Chemical Materials. 22, 587-603 (2010).
  8. Ceder, G. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature. 392, 694-696 (1998).
  9. Chung, S. Y., Bloking, J. T., Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials. 1, 123-128 (2002).
  10. Bruce, P. G., Scrosati, B., Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie-International Edition. 47, 2930-2946 (2008).
  11. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials. 4, 366-377 (2005).
  12. Hochbaum, A. I., Yang, P. D. Semiconductor Nanowires for Energy Conversion. Chemical Reviews. 110, 527-546 (2010).
  13. Wang, Y., Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Advanced Materials. 20, 2251-2269 (2008).
  14. Kang, B., Ceder, G. Battery materials for ultrafast charging and discharging. Nature. 458, 190-193 (2009).
  15. Liu, J., Manthiram, A. Improved Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.42Zn0.08O4 by Surface Modification. Journal of the Electrochemical Society. 156, A66-A72 (2009).
  16. Kayyar, A., Qian, H. J., Luo, J. Surface adsorption and disordering in LiFePO4 based battery cathodes. Applied Physics Letters. 95, (2009).
  17. Sun, K., Dillon, S. J. A mechanism for the improved rate capability of cathodes by lithium phosphate surficial films. Electrochemistry Communications. 13, 200-202 (2011).
  18. Kovalenko, I. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science. 333, 75-79 (2011).
check_url/pt/4104?article_type=t

Play Video

Citar este artigo
Kayyar, A., Huang, J., Samiee, M., Luo, J. Construction and Testing of Coin Cells of Lithium Ion Batteries. J. Vis. Exp. (66), e4104, doi:10.3791/4104 (2012).

View Video