Summary

小鼠离体心肌线粒体通透性转换孔开放中的多参数测量。

Published: September 07, 2012
doi:

Summary

这里介绍一个荧光光谱的测量小鼠离体心脏线粒体中的线粒体通透性转换孔开放的协议。该法涉及同时测定线粒体钙<sup> 2 +</sup处理,线粒体膜电位和线粒体体积。获得高品质和功能性的心脏线粒体的程序也被描述。

Abstract

线粒体通透性转换孔(mtPTP)是一种非特异性通道,形成内线粒体膜的运输溶质的相对分子​​质量小于1.5 kDa的。虽然最终分子身份的孔隙仍在辩论,如亲环蛋白D,VDAC和ANT的蛋白质有助于mtPTP形成。虽然参与的mtPTP开放的细胞死亡完善,越来越多的证据表明,mtPTP供应的生理作用过程中线粒体Ca 2 +稳态,生物能和氧化还原信号3。

被触发mtPTP开口矩阵的Ca 2 +,但其活性可以是由多个其它因素,如氧化应激,腺嘌呤核苷酸耗尽,高浓度的Pi,线粒体膜去极化或解偶联,和长链脂肪酸的4调制。 在体外 ,mtPTP开口可以ACHieved线粒体基质内Ca 2 +浓度增加,通过外源添加的Ca 2 +(钙保持能力)。当Ca 2 +的水平内线粒体达到一定的阈值,mtPTP打开和促进的Ca 2 +释放的质子动力,耗散,膜电位崩溃和线粒体基质体积(肿胀)的增加,最终导致破裂的线粒体外膜和细胞器的功能不可逆转的丧失。

在这里,我们描述了一种荧光检测,允许进行全面的表征mtPTP开离体小鼠心脏线粒体。该法涉及到3线粒体发生改变时mtPTP开幕的参数,同时测量:线粒体Ca 2 +处理(吸收和释放的Ca 2 +浓度测定介质中),线粒体膜电位,并mitochondrial量。采用的染料为Ca 2 +的测定培养基及线粒体膜电位的测量的Fura FF,膜不能渗透的比例的指标,进行中的Ca 2 +和JC-1,阳离子的存在下,在激发波长的移位,形成绿色的单体或红色总量的比例指标,分别在低和高的膜电位,。线粒体量的变化记录的线粒体悬浮液的光散射测量。由于高品质,功能性线粒体所需要的的mtPTP开放试验,我们还描述了必要的步骤,以获得完整的,高度耦合和功能的离体心脏线粒体。

Protocol

1。从小鼠心脏线粒体的分离分离心脏线粒体,麻醉和牺牲小鼠,根据您的当地机构动物管理和使用委员会批准的程序。 注:线粒体隔离协议的所有步骤必须执行在冰上。用冰冷的缓冲和预冷的培养皿中,Falcon管和Eppendorf管。在协议中给出的体积的样品中含有2小鼠心脏。 删除的心,把他们在寒冷的线粒体分离缓冲液(300 mM蔗?…

Discussion

这里介绍的协议描述了必要的实验步骤隔离小鼠心脏线粒体通透性转换孔开放,以评估在离体心脏线粒体( 图1图4):过程,呼吸控制,确保其完整性和功能,线粒体期间监测参数mtPTP开放和他们的测量采用的染料,成立荧光分析仪器,表征mtPTP开幕。在本协议中的荧光分光光度计采用允许同时这三个参数的快速测量。然而,可以采用使用其它市售仪器的基本协议,尽?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了HL094536(BJH)。

Materials

Name of the reagent Company Catalogue number
Trypsin Sigma-Aldrich T3030
Trypsin inhibitor (soybean) Sigma-Aldrich T9128
Sodium hydrosulfite Sigma-Aldrich 71699
Rotenone Sigma-Aldrich R8875
Cytochrome c Sigma-Aldrich C7752
Alamethicin Sigma-Aldrich A4665
CCCP Sigma-Aldrich C2759
Cyclosporin A Calbiochem 239835
Fura FF Invitrogen F14180
JC-1 Invitrogen T3168
Tissue grinder Potter-Elvehjem with Teflon pestle 15 ml Wheaton Industries  
Overhead stirrer Wheaton Industries 903475
Oxytherm (temperature controlled oxygen electrode) Hansatech Instruments  
QuantaMaster 80 dual emission spectrofluorometer Photon Technology International, Inc.  

Referências

  1. Kroemer, G., Galluzzi, L., Brenner, C. Mitochondrial Membrane Permeabilization in Cell Death. Physiol. Rev. 87, 99-163 (2007).
  2. Elrod, J., Wong, R., Mishra, S., Vagnozzi, R. J., Sakthievel, B., Goonasekera, S. A., Karch, J., Gabel, S., Farber, J., Force, T., Brown, J. H., Murphy, E., Molkentin, J. D. Cyclophilin D controls mitochondrial pore-dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J. Clin. Invest. 120, 3680-3687 (2010).
  3. Hom, J. R., Quintanilla, R. A., Hoffman, D. L., de Mesy Bentley, K. L., Molkentin, J. D., Sheu, S. S., Porter, G. A. The permeability transition pore controls cardiac mitochondrial maturation and myocyte. 21, 469-478 (2011).
  4. Halestrap, A. P. What is the mitochondrial permeability transition pore. Journal of Molecular and Cellular Cardiology. 46, 821-831 (2009).
  5. Wei, A. C., Liu, T., Cortassa, S., Winslow, R. L., O’Rourke, B. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Biochim. Biophys. Acta. 1813, 1373-1381 (2011).
  6. Saks, V. A., Kuznetsov, A. V., Kupriyanov, V. V., Miceli, M. V., Jacobus, W. E. Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J. Biol. Chem. 260, 7757-7764 (1985).
  7. Boehm, E. A., Jones, B. E., Radda, G. K., Veech, R. L., Clarke, K. Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. AJP – Heart. 280, 977-983 (2001).
  8. Fontaine, E., Eriksson, O., Ichas, F., Bernardi, P. Regulation of the Permeability Transition Pore in Skeletal Muscle Mitochondria. J. Biol. Chem. 273, 12662-12668 (1998).
  9. Berman, S. B., Watkins, S. C., Hastings, T. G. Quantitative biochemical and ultrastructural comparison of mitochondrial permeability transition in isolated brain and liver mitochondria: evidence for reduced sensitivity of brain mitochondria. Exp. Neurol. 164, 415-425 (2000).
  10. Panov, A., Dikalov, S., Shalbuyeva, N., Hemendinger, R., Greenamyre, J. T., Rosenfeld, J. Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am. J. Physiol. Cell Physiol. 292, 708-718 (2007).
  11. Frezza, C., Cipolat, S., Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nature Protocols. 2, 287-295 (2007).
  12. Pallotti, F., Lenaz, G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 80, 3-44 (2007).
check_url/pt/4131?article_type=t

Play Video

Citar este artigo
Marcu, R., Neeley, C. K., Karamanlidis, G., Hawkins, B. J. Multi-parameter Measurement of the Permeability Transition Pore Opening in Isolated Mouse Heart Mitochondria. J. Vis. Exp. (67), e4131, doi:10.3791/4131 (2012).

View Video