Summary

Трехмерные вестибулярного рефлекса Тестирование с помощью шестью степенями свободы движения платформы

Published: May 23, 2013
doi:

Summary

Описан метод для измерения трехмерных вестибулоокулярной глазные рефлексы (3D VOR) в организме человека использованием шестью степенями свободы (6DF) движения симулятор. Усиления и смещения углового VOR 3D обеспечивают прямое измерение качества функционирования вестибулярного аппарата. Репрезентативные данные о здоровых субъектов предоставляются

Abstract

The vestibular organ is a sensor that measures angular and linear accelerations with six degrees of freedom (6DF). Complete or partial defects in the vestibular organ results in mild to severe equilibrium problems, such as vertigo, dizziness, oscillopsia, gait unsteadiness nausea and/or vomiting. A good and frequently used measure to quantify gaze stabilization is the gain, which is defined as the magnitude of compensatory eye movements with respect to imposed head movements. To test vestibular function more fully one has to realize that 3D VOR ideally generates compensatory ocular rotations not only with a magnitude (gain) equal and opposite to the head rotation but also about an axis that is co-linear with the head rotation axis (alignment). Abnormal vestibular function thus results in changes in gain and changes in alignment of the 3D VOR response.

Here we describe a method to measure 3D VOR using whole body rotation on a 6DF motion platform. Although the method also allows testing translation VOR responses 1, we limit ourselves to a discussion of the method to measure 3D angular VOR. In addition, we restrict ourselves here to description of data collected in healthy subjects in response to angular sinusoidal and impulse stimulation.

Subjects are sitting upright and receive whole-body small amplitude sinusoidal and constant acceleration impulses. Sinusoidal stimuli (f = 1 Hz, A = 4°) were delivered about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5° in azimuth. Impulses were delivered in yaw, roll and pitch and in the vertical canal planes. Eye movements were measured using the scleral search coil technique 2. Search coil signals were sampled at a frequency of 1 kHz.

The input-output ratio (gain) and misalignment (co-linearity) of the 3D VOR were calculated from the eye coil signals 3.

Gain and co-linearity of 3D VOR depended on the orientation of the stimulus axis. Systematic deviations were found in particular during horizontal axis stimulation. In the light the eye rotation axis was properly aligned with the stimulus axis at orientations 0° and 90° azimuth, but gradually deviated more and more towards 45° azimuth.

The systematic deviations in misalignment for intermediate axes can be explained by a low gain for torsion (X-axis or roll-axis rotation) and a high gain for vertical eye movements (Y-axis or pitch-axis rotation (see Figure 2). Because intermediate axis stimulation leads a compensatory response based on vector summation of the individual eye rotation components, the net response axis will deviate because the gain for X- and Y-axis are different.

In darkness the gain of all eye rotation components had lower values. The result was that the misalignment in darkness and for impulses had different peaks and troughs than in the light: its minimum value was reached for pitch axis stimulation and its maximum for roll axis stimulation.

Case Presentation

Nine subjects participated in the experiment. All subjects gave their informed consent. The experimental procedure was approved by the Medical Ethics Committee of Erasmus University Medical Center and adhered to the Declaration of Helsinki for research involving human subjects.

Six subjects served as controls. Three subjects had a unilateral vestibular impairment due to a vestibular schwannoma. The age of control subjects (six males and three females) ranged from 22 to 55 years. None of the controls had visual or vestibular complaints due to neurological, cardio vascular and ophthalmic disorders.

The age of the patients with schwannoma varied between 44 and 64 years (two males and one female). All schwannoma subjects were under medical surveillance and/or had received treatment by a multidisciplinary team consisting of an othorhinolaryngologist and a neurosurgeon of the Erasmus University Medical Center. Tested patients all had a right side vestibular schwannoma and underwent a wait and watch policy (Table 1; subjects N1-N3) after being diagnosed with vestibular schwannoma. Their tumors had been stabile for over 8-10 years on magnetic resonance imaging.

Protocol

1. 6DF движения платформы Вестибулярная стимулы были доставлены с подвижной платформе (см. рисунок 1), способных генерировать угловых и поступательных стимулов в общей сложности шестью степенями свободы (FCS-MOOG, Nieuw-Vennep, Нидерланды). Платформа перемещается шесть элек…

Representative Results

Синусоидальная световой стимуляции Рисунок 4 (верхняя панель) показывает в контрольной группе среднее усиление горизонтальные, вертикальные и кручение угловые компоненты скорости для всех тестируемых синусоидальный стимуляции в горизонтальной плоскости на с?…

Discussion

Эта статья описывает метод для точного измерения угловых 3D VOR, реагируя на целые вращений тела в организме человека. Преимущество метода в том, что он дает количественную информацию о усиления и смещения углового VOR 3D во всех трех измерениях. Метод полезен для фундаментальных исследова?…

Declarações

The authors have nothing to disclose.

Acknowledgements

<p class="jove_content"> Финансируемый голландской NWO / ZonMw гранты 912-03-037 и 911-02-004.</p>

Materials

Electric Motion Base MB-E-6DOF/24/1800KG * (Formerly E-CUE 624-1800) FCS-MOOG, Nieuw-Vennep, The Netherlands
Magnetic field with detector, Model EMP3020 Skalar Medical, Delft, The Netherlands
CED power 1401, running Spike2 v6 Cambridge Electronic Design, Cambridge
Electromagnetic search coils Chronos Vision, Berlin, Germany

Referências

  1. Houben, M. M. J., Goumans, J., Dejongste, A. H., Van der Steen, J. Angular and linear vestibulo-ocular responses in humans. Ann. N.Y. Acad. Sci. 1039, 68-80 (2005).
  2. Collewijn, H., Van der Steen, J., Ferman, L., Jansen, T. C. Human ocular counterroll: assessment of static and dynamic properties from electromagnetic scleral coil recordings. Exp. Brain Res. 59, 185-196 (1985).
  3. Goumans, J., Houben, M. M., Dits, J., Van der Steen, J. Peaks and troughs of three-dimensional vestibulo-ocular reflex in humans. J. Assoc. Res. Otolaryngol. 11, 383-393 (2010).
  4. Ferman, L., Collewijn, H., Jansen, T. C., Vanden Berg, A. V. Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a three-dimensional scleral induction coil technique. Vision Res. 27, 811-828 (1987).
  5. Robinson, D. A. A Method of Measuring Eye Movement Using a Scleral Search Coil in a Magnetic Field. IEEE Trans. Biomed. Eng. 10, 137-145 (1963).
  6. Haustein, W. Considerations on Listing’s Law and the primary position by means of a matrix description of eye position control. Biol. Cybern. 60, 411-420 (1989).
  7. Haslwanter, T., Moore, S. T. A theoretical analysis of three-dimensional eye position measurement using polar cross-correlation. IEEE Trans. Biomed. Eng. 42, 1053-1061 (1995).
  8. Aw, S. T., et al. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. II. responses in subjects with unilateral vestibular loss and selective semicircular canal occlusion. J. Neurophysiol. 76, 4021-4030 (1996).
  9. Aw, S. T., et al. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. I. Responses in normal subjects. J. Neurophysiol. 76, 4009-4020 (1996).
  10. Crawford, J. D., Vilis, T. Axes of eye rotation and Listing’s law during rotations of the head. J. Neurophysiol. 65, 407-423 (1991).
  11. Tabak, S., Collewijn, H., Boumans, L. J. Deviation of the subjective vertical in long-standing unilateral vestibular loss. Acta. Otolaryngol. 117, 1-6 (1997).
  12. Tabak, S., Collewijn, H., Boumans, L. J., Van der Steen, J. Gain and delay of human vestibulo-ocular reflexes to oscillation and steps of the head by a reactive torque helmet. II. Vestibular-deficient subjects. Acta. Otolaryngol. 117, 796-809 (1997).
  13. Van der Steen, J., Collewijn, H. Ocular stability in the horizontal, frontal and sagittal planes in the rabbit. Exp. Brain Res. 56, 263-274 (1984).
  14. Seidman, S. H., Leigh, R. J., Tomsak, R. L., Grant, M. P., Dell’Osso, L. F. Dynamic properties of the human vestibulo-ocular reflex during head rotations in roll. Vision Res. 35, 679-689 (1995).
  15. Seidman, S. H., Leigh, R. J. The human torsional vestibulo-ocular reflex during rotation about an earth-vertical axis. Brain Res. 504, 264-268 (1989).
  16. Tweed, D., et al. Rotational kinematics of the human vestibuloocular reflex. I. Gain matrices. J. Neurophysiol. 72, 2467-2479 (1994).
  17. Tabak, S., Collewijn, H. Human vestibulo-ocular responses to rapid, helmet-driven head movements. Exp. Brain Res. 102, 367-378 (1994).
  18. Paige, G. D. Linear vestibulo-ocular reflex (LVOR) and modulation by vergence. Acta. Otolaryngol. Suppl. 481, 282-286 (1991).
  19. Halmagyi, G. M., Aw, S. T., Cremer, P. D., Curthoys, I. S., Todd, M. J. Impulsive testing of individual semicircular canal function. Ann. N.Y. Acad. Sci. 942, 192-200 (2001).
  20. Tabak, S., Collewijn, H. Evaluation of the human vestibulo-ocular reflex at high frequencies with a helmet, driven by reactive torque. Acta. Otolaryngol. Suppl. 520 Pt. 1, 4-8 (1995).
  21. Crawford, J. D., Vilis, T. Axes of eye rotation and Listing’s law during rotations of the head. J. Neurophysiol. 65, 407-423 (1991).
  22. Migliaccio, A. A., et al. The three-dimensional vestibulo-ocular reflex evoked by high-acceleration rotations in the squirrel monkey. Exp. Brain Res. 159, 433-446 (2004).
check_url/pt/4144?article_type=t

Play Video

Citar este artigo
Dits, J., Houben, M. M., van der Steen, J. Three Dimensional Vestibular Ocular Reflex Testing Using a Six Degrees of Freedom Motion Platform. J. Vis. Exp. (75), e4144, doi:10.3791/4144 (2013).

View Video