Summary

幼虫,蛹和成人的解剖和免疫组化<em>果蝇</em>视网膜

Published: November 14, 2012
doi:

Summary

“<em>果蝇</em>视网膜是一小部分的刻板的方式所产生的细胞类型组成的类似晶体的晶格<sup> 1</sup>。其顺从先进的遗传分析,使研究复杂的发展计划。本协议描述了视网膜的解剖和免疫组化在三个连续的发育阶段,与光感受器分化的重点。

Abstract

果蝇的复眼由约750小眼(单位只眼)。每个小眼组成的约20个细胞,包括镜头的分泌视锥细胞,色素细胞,刷毛细胞和8感光体(的PR)R 1-R 8 2。永久居民有专门的微绒毛的结构,rhabdomeres,其中含有光敏感的的颜料,Rhodopsins(右轴)。 6的PR(R1-R6)的rhabdomeres形成一个梯形和包含Rh1对3 4。 R7和R8的rhabdomeres串联在梯形的中心被定位在共享相同的路径的光。 R7和R8永久居民的随机表达不同的组合RHS在两个主要的亚型5'p'亚型,RH3 p R7S加上RH5 p R8S,而在'Y'亚型,与RH4 y R7S RH6 y,R8S 6 7 8。

PR和发展,就要有规范的早期开始在幼虫眼触角成虫盘,单层的上皮细胞。差异化的浪潮席卷盘9和启动组件的未分化细胞,成小眼10-11。的创始人细胞的R8被指定为第,并招募R1-6和R7 12-14。随后,在蛹的发展,PR分化导致广泛的形态学改变,15日 ,,包括rhabdomere形成,突触形成和最终RH表达。

在这个协议中,我们描述了在三个定义的视网膜发育期,可应用于视网膜的形成和发展途径,以解决各种问题的视网膜解剖和免疫组化的方法。在这里,我们使用这些的方法可视化逐步PR分化,在单细胞水平在整个安装幼虫,midpupal和成人视网膜( <s豪华型>图1)。

Protocol

1。介绍在这段视频中,我们将介绍三个定义的发育时期的视网膜解剖和免疫组织化学的方法:三龄幼虫,midpupal和成人阶段。虽然我们的协议也适用于其他蛹的阶段(早期阶段的详细信息,请参阅16),我们选择了midpupal的阶段,因为它是最佳的成像PR在一个焦平面,其核很容易识别,方便的可视化转录因子的表达模式。后期蛹视网膜剥离是非常相似的的成人视网膜剥?…

Discussion

1。故障排除

根据我们的经验,解剖需要实践(可长达数周),并促进实现舒适的手位21搁在桌子上,肘部和前臂和手指接触的解剖盘。这样一来,只有拇指,食指和中指进行细微的动作。

卸下椎板不损坏感光体的情况下可能是最具挑战性的步骤。红眼野生型的实践与飞白眼突变体解剖,第一层是对红色的眼睛色素沉着更容易看到。此外,使用灯光?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由陆国际律师事务所奖学金HY支持。 H.,一个简棺童车纪念医学研究的博士后研究基金RJJ,美国国立卫生研究院资助F32EY016309到DV,纽约州立大学的教务长的论文奖学金DJ,NIH GrantR01 EY13010到CD和一个DFG奖学金JR(RI 2208/1- 1)。我们感谢龚如心Vogt和帕梅拉Boodram的手稿上的评论。

Materials

Reagent
Phosphate-buffered saline (PBS1x, pH 7.4) Sigma Prepare 10x stock solution 20. Dilute with distilled water to obtain 1x PBS and store at room temperature. Cool on ice before dissections.
Triton-X 100 Sigma 9002-93-1 Caution: Irritant! Wear gloves. Prepare 50 ml 1xPBS with 0.3% Triton X-100 (PBST). Store at room temperature.
37% formaldehyde solution Fisher Scientific F75P1GAL Caution: Toxic, probable human carcinogen! Wear gloves. Before the fixation step, freshly prepare 3.7% solution in a chemical fume hood by diluting with PBS, store on ice.
5% normal horse serum Jackson Immuno Research 008-000-001 Prepare 5% v/v dilution in PBST. Store at four degrees.
Primary and secondary antibodies (e.g. Donkey anti-sheep Alexa Fluor 488, Donkey-anti rabbit Alexa Fluor 555, Donkey anti-mouse Alexa Fluor 647) Invitrogen Molecular Probes A11015
A31572
A31571
Dilute secondary antibodies 1:800 in PBST and store at four degrees.
Alexa Fluor 488 Phalloidin A12379 Dilute 1:100 in secondary antibody solution.
Slowfade Gold Antifade reagent Invitrogen Molecular Probes S36936 Mounting medium. Store at -20 degrees.
Glycerol Fisher Scientific G31-1 For mounting. Prepare 10 ml of 50% dilution with distilled water, store at room temp.
CO2 For anesthetizing adult flies.
Equipment
Two sharp forceps (Dumont #55) Fine Science Tools 11255-20
Sylgard 184 Silicone Elastomer Kit Dow Corning Prepare Sylgard dissection dish by filling a plastic Petri dish with Sylgard mixture.
Three-well glass dissection dishes Fisher Scientific 21-379
Two minutien dissecting pins (0.1 mm diameter) and two pinholders (12 cm) Fine Science tools 26002-10 Insert one minutien pin in each of the two pinholders and bend one of the pins to form a hook.
Microscope cover slips (22×22-1 and 24×40-1) Fisher Scientific 12-542A
Microscope slides (25x75x1.0 mm; precleaned) Fisher Scientific 12-550-143
1.5 ml microcentrifuge tubes
Clear nail polish or Scotch tape
Orbital shaker Bellco
Slide holder box Fisher Scientific
Parafilm Bemis PM996
Thin paintbrush
P20 and P200 micropipettes and tips
Dissecting microscope
Small bucket with ice For cooling the glass well plates, dissected retinas and solutions.

Referências

  1. Ready, D. F., Hanson, T. E., Benzer, S. Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53, 217-240 (1976).
  2. Hardie, R. C., D, O. t. t. o. s. o. n. Functional organization of the fly retina. Sensory Physiology. 5, 1-79 (1985).
  3. O’Tousa, J. E. The Drosophila ninaE gene encodes an opsin. Cell. 40, 839-850 (1985).
  4. Zuker, C. S., Cowman, A. F., Rubin, G. M. Isolation and structure of a rhodopsin gene from D. melanogaster. Cell. 40, 851-858 (1985).
  5. Rister, J., Desplan, C. The retinal mosaics of opsin expression in invertebrates and vertebrates. Dev. Neurobiol. 71, 1212-1226 (2011).
  6. Chou, W. H. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron. 17, 1101-1115 (1996).
  7. Chou, W. H. Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification. Development. 126, 607-616 (1999).
  8. Papatsenko, D., Sheng, G., Desplan, C. A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. Development. 124, 1665-1673 (1997).
  9. Wolff, T., Ready, D. F. The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development. 113, 841-850 (1991).
  10. Roignant, J. Y., Treisman, J. E. Pattern formation in the Drosophila eye disc. Int. J. Dev. Biol. 53, 795-804 (2009).
  11. Tsachaki, M., Sprecher, S. G. Genetic and developmental mechanisms underlying the formation of the Drosophila compound eye. Dev. Dyn. 241, 40-56 (2012).
  12. Tomlinson, A., Ready, D. F. Neuronal differentiation in Drosophila ommatidium. Dev. Biol. 120, 366-376 (1987).
  13. Zipursky, S. L. Molecular and genetic analysis of Drosophila eye development: sevenless, bride of sevenless and rough. Trends Neurosci. 12, 183-189 (1989).
  14. Basler, K., Hafen, E. Specification of cell fate in the developing eye of Drosophila. Bioessays. 13, 621-631 (1991).
  15. Charlton-Perkins, M., Cook, T. A. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr. Top Dev. Biol. 93, 129-173 (2010).
  16. Walther, R. F., Pichaud, F. Immunofluorescent staining and imaging of the pupal and adult Drosophila visual system. Nat. Protoc. 1, 2635-2642 (2006).
  17. Wolff, T., Sullivan, W. e. a. Histological Techniques for the Drosophila Eye Part I: Larva and Pupa. Drosophila Protocols. , (2000).
  18. Wolff, T. Dissection techniques for pupal and larval Drosophila eyes. CSH Protoc. 2007, pdb prot4715 (2007).
  19. Bainbridge, S. P., Bownes, M. Staging the metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morphol. 66, 57-80 (1981).
  20. Morante, J., Desplan, C. Dissection and staining of Drosophila optic lobes at different stages of development. Cold Spring Harb Protoc. , 652-656 (2011).
  21. Williamson, W. R., Hiesinger, P. R. Preparation of Developing and Adult Drosophila Brains and Retinae for Live Imaging. J. Vis. Exp. (37), e1936 (2010).
  22. Stowers, R. S., Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genética. 152, 1631-1639 (1999).
  23. Newsome, T. P., Asling, B., Dickson, B. J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development. 127, 851-860 (2000).
  24. Sood, P., Johnston, R. J., Kussell, E. Stochastic De-repression of Rhodopsins in Single Photoreceptors of the Fly Retina. PLoS Comput. Biol. 8, e1002357 (2012).
  25. Johnston, R. J. Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye. Cell. 145, 956-968 (2011).
  26. Jukam, D., Desplan, C. Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and Melted specifies and maintains postmitotic neuronal fate. Dev. Cell. 21, 874-887 (2011).
  27. Vasiliauskas, D. Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors. Nature. 479, 108-112 (2011).
  28. Kumar, J. P. Building an ommatidium one cell at a time. Dev. Dyn. 241, 136-149 (2012).
check_url/pt/4347?article_type=t

Play Video

Citar este artigo
Hsiao, H., Johnston Jr., R. J., Jukam, D., Vasiliauskas, D., Desplan, C., Rister, J. Dissection and Immunohistochemistry of Larval, Pupal and Adult Drosophila Retinas. J. Vis. Exp. (69), e4347, doi:10.3791/4347 (2012).

View Video