Summary

3D原子力組織の変化を研究するために3D保存状態間期核に組み合わさ免疫やDNA FISH

Published: February 03, 2013
doi:

Summary

ここでは、3D顕微鏡や分析(3D免疫DNA FISH)が続いたDNA FISHによる蛍光抗体法およびDNA配列によるヒストン修飾の同時検出のためのプロトコルを記述します。

Abstract

3D共焦点顕微鏡(3DのDNA FISH)を、続いて3次元的に保存核にDNAプローブを用いた蛍光 in situハイブリダイゼーションは、個々の細胞における遺伝子座の位置、サブ領域の染色体または全体の領土を視覚化するための最も直接的な方法を表しています。このタイプの分析は、核のグローバルアーキテクチャだけでなく、核空間内の特定のゲノム遺伝子座や地域の行動への洞察を提供します。免疫蛍光法は、他の一方で、核タンパク質の検出(修正ヒストン、ヒストンバリアントと修飾、転写機構や要因、原子力サブコンパートメントなど)を許可します。免疫蛍光法および3DのDNA FISHを組み合わせるにおける主要な課題は核の3Dアーキテクチャと同様に抗体によって検出されるエピトープを保持する一方であり、他方では、DNAプローブの浸透が検出できるように遺伝子座や染色体テリトリーの1月5日。ここでは、3D保存核内ゲノム遺伝子座とクロマチン修飾の可視化を組み合わせたプロトコルを提供します。

Introduction

エピジェネティックなメカニズムトリガ成立と発達と細胞型特異的転写プロファイルの継承。 1レベルでこれは、アクティブまたはサイレントゲノム領域を定義クロマチン包装の変調を伴う。大規模に、ゲノムと核構造のグローバル3D組織はまた、転写パターンの制御に役割を果たしています。したがって、これらのepigenomic機能の解剖は、遺伝子が6-11を規制されている方法を完全に理解するために不可欠です。

組み合わせた免疫蛍光法および3DのDNA FISHは、特異的な相互作用/核内のDNA配列および/またはタンパク質の関連を評価することによって、分子および生化学的解析を補完するユニークな機会を提供します。さらに、このようなクロマチン免疫沈降(ChIP-seq)が染色体またはキャプチャのコンフォメーションなどのゲノムワイドなハイスループット技術は深いシーケンシングと相まってしばらく(4C-SEQ、5Cは、Hi-C)にグローバルdatを提供細胞集団は12日 、免疫蛍光/ DNA FISHの技術は、単一細胞レベルでの解析を可能にします。

ここでは、3D顕微鏡や分析(3D免疫FISH)が続いたDNA FISHによって免疫蛍光法およびDNA配列によってヒストン修飾の同時検出のためのプロトコルを記述します。このプロトコルの利点は、DNAやタンパク質の構造の保全を組み合わせた視覚化したものです。この分野での我々の経験では、既存のプロトコルを改善し、簡素化することができるようになりました。我々は組換えを受けてリンパ球におけるDNA二本鎖切断を検出するには、このプロトコルを使用していたが、この方法は、他のタンパク質と他の細胞型に適用することができます。

Protocol

1。フルオロフォアとのDNAプローブのラベリング:ニック翻訳(〜6時間) クリーンBAC DNA(マキシプレップにより調製)またはプラスミドやPCR産物は、H 2 Oに再懸濁した全てが、標識に使用することができます注堅牢FISHの信号については、プローブは少なくとも10キロバイトに及ぶべきであること。 37℃(全ての試薬 ​​を表1に記載されてい?…

Representative Results

DNAと免疫FISHはBおよびTリンパ球の開発時に抗原受容体遺伝子座のV(D)J組み換えのプロセスに関連付けられている核の組織の変化を研究するためにSkokラボで使用されています。私に私たちを有効にする)遺伝子座の両端(収縮)の間の測定距離は上記の詳細技術ⅱ)対立遺伝子または遺伝子座の間の測定距離(ペアリング)、iii)は座、静脈内で発生するDNA損傷を解析するには)対立遺伝?…

Discussion

上記の詳細テクニックは、リンパ球の30,31を開発中の免疫グロブリンおよびTCRA / D座のV(D)J組み換えの規制を分析するために私たちの研究室で使用されていた。我々は、この技術は、異なる細胞型では、様々な核タンパク質、核コンパートメントと遺伝子座の検出に適応させることができると確信しています。プロトコルの修正が必要になることがあり、この場合に集?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我々は、議論とコメントのためのスザンナ·ヒューイット、特に、Skokラボのメンバーに感謝したいと思います。この作品は、健康補助金総合研究所R01GM086852、RC1CA145746(JAS)によってサポートされています。 JASは白血病リンパ腫協会の学者です。 JCは、がん研究所のア​​ーヴィング研究所フェロー。 MMは、国立科学財団助成統合大学院教育研究見習(NSF IGERT 0333389)によってサポートされています。

Materials

Name of Reagent/Material Company Catalogue Number Comments
H2O Fisher # BP2470
RNase A Sigma # R4642
dNTP Sigma # DNTP100
Alexa dUTP Invitrogen # C11397 to C-11401
Cy3 or Cy5 dUTP Fisher # 45-001-xxx
DNase I Roche # 04536282001
DNA Pol I Biolabs # M0209
0.025 μm filters Millipore # VSWP02500
Cot-1 DNA 1 mg/ml Invitrogen # 18440
Hybloc DNA 1 mg/ml Applied Genetics # MHB
Salmon sperm Sigma # D1626 powder to be resuspended at 10 mg/ml in H2O
NaAc (Sodium Acetate, pH 5.2, buffer solution) Sigma # S7899
Ficoll 400 (Mol Biol grade) Fisher # 525
Polyvinylpyrrolidone (Mol Biol grade) Fisher # BP431
Dextran sulfate powder Sigma # D8906
SSPE (Saline-Sodium Phosphate-EDTA) 20x solution Fisher # BP1328
Formamide Fisher # BP227
Coverslips Fisher # 12-548-B
Slides Fisher # 12-550
6-well plates Fisher # 0720080
PBS, 10x Fisher # MT-46-013-CM
Poly-L-lysine solution Sigma # P8920
Paraformaldehyde, prills, 95% Sigma # 441244
Triton-X-100, Mol Biol grade Sigma # T8787
BSA (Bovine Serum Albumin) Fraction V Fisher # BP 1600
Normal goat serum Vector Labs # S-1000
Tween-20, Mol Biol grade Sigma # P9416
SSC (Saline Sodium Citrate) 20x solution Fisher # BP1325
ProLong Gold antifade reagent Invitrogen # P36930
DAPI (4′,6-diamidino-2-phenylindole) Sigma # D9542
Best test one coat rubber cement Art or office supply stores
Table 1. Specific reagents and small equipment.

Referências

  1. Chaumeil, J., Okamoto, I., Heard, E. X-chromosome inactivation in mouse embryonic stem cells: analysis of histone modifications and transcriptional activity using immunofluorescence and FISH. Methods in enzymology. , 376-405 (2004).
  2. Cremer, M., et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463, 205-239 (2008).
  3. Chaumeil, J., Augui, S., Chow, J. C., Heard, E. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol. Biol. 463, 297-308 (2008).
  4. Solovei, I., Cremer, M. 3D-FISH on cultured cells combined with immunostaining. Methods Mol. Biol. 659, 117-126 (2010).
  5. Markaki, Y. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. BioEssays : news and reviews in molecular, cellular and developmental biology. 34, 412-426 (2012).
  6. Heard, E., Bickmore, W. The ins and outs of gene regulation and chromosome territory organisation. Current opinion in cell biology. 19, 311-316 (2007).
  7. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell. 128, 787-800 (1016).
  8. Fraser, P., Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature. 447, 413-417 (2007).
  9. Cremer, T., et al. Chromosome territories–a functional nuclear landscape. Current opinion in cell biology. 18, 307-316 (2006).
  10. Mao, Y. S., Zhang, B., Spector, D. L. Biogenesis and function of nuclear bodies. Trends in genetics : TIG. 27, 295-306 (2011).
  11. Dostie, J., Bickmore, W. A. Chromosome organization in the nucleus – charting new territory across the Hi-Cs. Current opinion in genetics & development. 22, 125-131 (2012).
  12. van Steensel, B., Dekker, J. Genomics tools for unraveling chromosome architecture. Nature. 28, 1089-1095 (2010).
  13. Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association. 253, 1951 (1951).
  14. Collins, A., et al. RUNX transcription factor-mediated association of Cd4 and Cd8 enables coordinate gene regulation. Immunity. 34, 303-314 (2011).
  15. Fisher, R. A. On the interpretation of χ2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society. 85, 87-94 (1922).
  16. Benjamini, Y. H., Yosef, Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 57, 125-133 (1995).
  17. Fitzsimmons, S. P., Bernstein, R. M., Max, E. E., Skok, J. A., Shapiro, M. A. Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Igkappa locus. J. Immunol. 179, 5264-5273 (2007).
  18. Fuxa, M., et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411-422 (2004).
  19. Goldmit, M. Epigenetic ontogeny of the Igk locus during B cell development. Nature. 6, 198-203 (2005).
  20. Hewitt, S. L. Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces ‘decontraction’ of the Igh locus in pre-B cells. Nature. 9, 396-404 (2008).
  21. Johnson, K. IL-7 Functionally Segregates the Pro-B Cell Stage by Regulating Transcription of Recombination Mediators across Cell Cycle. Journal of Immunology. , (2012).
  22. Karnowski, A., et al. Silencing and nuclear repositioning of the lambda5 gene locus at the pre-b cell stage requires Aiolos and OBF-1. PLoS ONE. 3, e3568 (2008).
  23. Kosak, S. T. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 296, 158-162 (2002).
  24. Liu, H., et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev. 21, 1179-1189 (2007).
  25. Parker, M. J. The pre-B-cell receptor induces silencing of VpreB and lambda5 transcription. Embo J. 24, 3895-3905 (2005).
  26. Roldan, E., et al. Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nature immunology. 6, 31-41 (2005).
  27. Skok, J. A. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature. 2, 848-854 (2001).
  28. Skok, J. A. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nature immunology. 8, 378-387 (2007).
  29. Xiang, Y., Zhou, X., Hewitt, S. L., Skok, J. A., Garrard, W. T. A multifunctional element in the mouse Igkappa locus that specifies repertoire and Ig loci subnuclear location. Journal of Immunology. 186, 5356-5366 (2011).
  30. Hewitt, S. L. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature immunology. 10, 655-664 (2009).
  31. Deriano, L., et al. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature. 471, 119-123 (2011).
  32. Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M., Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Molecular cell. 3, 207-217 (1999).
  33. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M., Nussenzweig, A. H2AX: the histone guardian of the genome. DNA repair. 3, 959-967 (2004).
  34. Croft, J. A., et al. Differences in the localization and morphology of chromosomes in the human nucleus. The Journal of cell biology. 145, 1119-1131 (1999).
  35. Chaumeil, J., Le Baccon, P., Wutz, A., Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223-2237 (2006).
  36. Walter, J., et al. Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenetic and genome research. 114, 367-378 (2006).
  37. Toomre, D., Bewersdorf, J. A new wave of cellular imaging. Annual review of cell and developmental biology. 26, 285-314 (2010).
  38. Schermelleh, L., Heintzmann, R., Leonhardt, H. A guide to super-resolution fluorescence microscopy. The Journal of cell biology. 190, 165-175 (2010).
  39. Dobbie, I. M. OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harbor protocols. , 899-909 (2011).
  40. Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A., Bickmore, W. A. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 19, 901-909 (2011).
check_url/pt/50087?article_type=t

Play Video

Citar este artigo
Chaumeil, J., Micsinai, M., Skok, J. A. Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization. J. Vis. Exp. (72), e50087, doi:10.3791/50087 (2013).

View Video