Summary

В Vivo Двухфотонные изображений зависящие от опыта молекулярные изменения в корковых нейронов

Published: January 05, 2013
doi:

Summary

Опыт зависит от молекулярных изменений в нейронах имеют важное значение для способности мозга к адаптации в ответ на поведенческие проблемы.<em> В естественных условиях</em> Двухфотонного изображений метод описан здесь, что позволяет отслеживать такие молекулярные изменения в отдельные нейроны коры через генетически закодирована журналистам.

Abstract

The brain’s ability to change in response to experience is essential for healthy brain function, and abnormalities in this process contribute to a variety of brain disorders1,2. To better understand the mechanisms by which brain circuits react to an animal’s experience requires the ability to monitor the experience-dependent molecular changes in a given set of neurons, over a prolonged period of time, in the live animal. While experience and associated neural activity is known to trigger gene expression changes in neurons1,2, most of the methods to detect such changes do not allow repeated observation of the same neurons over multiple days or do not have sufficient resolution to observe individual neurons3,4. Here, we describe a method that combines in vivo two-photon microscopy with a genetically encoded fluorescent reporter to track experience-dependent gene expression changes in individual cortical neurons over the course of day-to-day experience.

One of the well-established experience-dependent genes is Activity-regulated cytoskeletal associated protein (Arc)5,6. The transcription of Arc is rapidly and highly induced by intensified neuronal activity3, and its protein product regulates the endocytosis of glutamate receptors and long-term synaptic plasticity7. The expression of Arc has been widely used as a molecular marker to map neuronal circuits involved in specific behaviors3. In most of those studies, Arc expression was detected by in situ hybridization or immunohistochemistry in fixed brain sections. Although those methods revealed that the expression of Arc was localized to a subset of excitatory neurons after behavioral experience, how the cellular patterns of Arc expression might change with multiple episodes of repeated or distinctive experiences over days was not investigated.

In vivo two-photon microscopy offers a powerful way to examine experience-dependent cellular changes in the living brain8,9. To enable the examination of Arc expression in live neurons by two-photon microscopy, we previously generated a knock-in mouse line in which a GFP reporter is placed under the control of the endogenous Arc promoter10. This protocol describes the surgical preparations and imaging procedures for tracking experience-dependent Arc-GFP expression patterns in neuronal ensembles in the live animal. In this method, chronic cranial windows were first implanted in Arc-GFP mice over the cortical regions of interest. Those animals were then repeatedly imaged by two-photon microscopy after desired behavioral paradigms over the course of several days. This method may be generally applicable to animals carrying other fluorescent reporters of experience-dependent molecular changes4.

Protocol

Экспериментальные процедуры, описанные ниже, были одобрены Национальным институтом психического здоровья животных и использованию комитета и были в соответствии с Национальными Институтами Здоровья Руководство по уходу и использованию лабораторных животных. <p class="jove_titl…

Representative Results

Этот протокол описывает метод для отслеживания зависящие от опыта молекулярные изменения в отдельных корковых нейронов в живых животных. Хронические черепно окно создается впервые за кортикальной области интереса в проведении мышью флуоресцентные корреспондент экспрессии гено?…

Discussion

В методе естественных изображений описанный здесь позволяет повторную экспертизу д'Арк изменения экспрессии генов в той же набор нейронов в течение нескольких дней в живых животных. Это эффективный и универсальный метод получения информации о нейронной пластичности связ…

Declarações

The authors have nothing to disclose.

Acknowledgements

Авторы хотели бы поблагодарить Л. Belluscio для хирургии съемках оборудования, Д. Квон для съемок помощи, K. Liu для редактирования видео помощь, и К. Маклеод для всех фоновой музыки. KW признает щедрой поддержке Отдела NIMH очной исследовательских программ и гены, познание и психоз программы. Эта работа была поддержана NIMH Внутренние программы исследований (VC, YY, SMKW) и Отдела NIAAA очной клинической и биологической исследовательской программы (VC, RMC, DML).

Materials

Name of the Equipment Company Catalogue number Comments (optional)
FV1000 multi-photon laser scanning microscope Olympus FV1000MPE Imaging
Dissection microscope Omano 555V107 Surgery
Stereotaxis surgery stage for mice Harvard Apparatus 726335 Surgery
20X or 25X water immersion objective Olympus XLPL25XWMP Imaging
Microscope stage with head-fixation frame Custom made N/A Imaging
Fine forceps Fine Science Tools 11251-20 Surgery
Dental drill burr Fine Science Tools 19007-05 Surgery
CCD camera QImaging QICAM 12-bit Imaging

Referências

  1. Leslie, J. H., Nedivi, E. Activity-regulated genes as mediators of neural circuit plasticity. Progress in neurobiology. 94 (3), 223-237 (2011).
  2. Flavell, S. W., Greenberg, M. E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annual review of neuroscience. 31, 563-590 (2008).
  3. Guzowski, J. F., et al. Mapping behaviorally relevant neural circuits with immediate-early gene expression. Current opinion in neurobiology. 15 (5), 599-606 (2005).
  4. Barth, A. L. Visualizing circuits and systems using transgenic reporters of neural activity. Curr. Opin. Neurobiol. 17 (5), 567-5671 (2007).
  5. Lyford, G. L., et al. a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron. 14 (2), 433-445 (1995).
  6. Link, W., et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. U.S.A. 92 (12), 5734-5738 (1995).
  7. Shepherd, J. D., Bear, M. F. New views of Arc, a master regulator of synaptic plasticity. Nature neuroscience. 14 (3), 279-284 (2011).
  8. Fu, M., Zuo, Y. Experience-dependent structural plasticity in the cortex. Trends in Neurosciences. 34 (4), 177-187 (2011).
  9. Holtmaat, A., et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature. 4 (8), 1128-1144 (2009).
  10. Wang, K. H., et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell. 126 (2), 389-402 (2006).
  11. Mostany, R., Portera-Cailliau, C. A Craniotomy Surgery Procedure for Chronic Brain Imaging. J. Vis. Exp. (12), e680 (2008).
  12. Dombeck, D. A., et al. Imaging Large-Scale Neural Activity with Cellular Resolution in Awake. Mobile Mice. Neuron. 56 (1), 43-57 (2007).
  13. Zipfel, W. R. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. PNAS. 100 (12), 7075-7080 (2003).
  14. Eichhoff, G. In vivo calcium imaging of the aging and diseased brain. Eur. J. Nucl. Med. Mol. Imaging. 35, 99-106 (2008).
  15. Klohs, J., Rudin, M. Unveiling molecular events in the brain by noninvasive imaging. The Neuroscientist: a review journal bringing neurobiology. neurology and psychiatry. 17 (5), 539-559 (2011).
  16. Chen, L. M., et al. A chamber and artificial dura method for long-term optical imaging in the monkey. Journal of neuroscience. 113 (1), 41-419 (2002).
  17. Kleinfeld, D., et al. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America. 95 (26), 15741-15746 (1998).
  18. Barretto, R. P., et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nature medicine. 17 (2), 223-228 (2011).
  19. Stosiek, C., et al. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. U.S.A. 100 (12), 7319-7324 (2003).
  20. Tian, L., et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods. 6 (12), 875-881 (2009).
check_url/pt/50148?article_type=t

Play Video

Citar este artigo
Cao, V. Y., Ye, Y., Mastwal, S. S., Lovinger, D. M., Costa, R. M., Wang, K. H. In Vivo Two-photon Imaging Of Experience-dependent Molecular Changes In Cortical Neurons. J. Vis. Exp. (71), e50148, doi:10.3791/50148 (2013).

View Video