Summary

并行定量的导电性和力学性能测试的有机光伏材料利用原子力显微镜

Published: January 23, 2013
doi:

Summary

有机光伏(OPV)材料在纳米尺度本质上是不均匀的。纳米非均匀性,OPV材料的影响,光伏设备的性能。在本文中,我们描述了一个协议,用于低于100纳米的分辨率OPV材料的电气和机械性能的定量测量。

Abstract

有机光伏(OPV)材料在纳米尺度本质上是不均匀的。纳米非均匀性,OPV材料的影响,光伏设备的性能。因此,了解空间组成的变化以及OPV材料的电性能向前推动光伏技术是极为重要的。1,2在本文中,我们描述了协议的OPV材料的电气和机械性能的定量测量子-100纳米的分辨率。目前,材料的性能进行测量,用市售基于AFM的的技术(PeakForce,导电AFM),一般只提供定性信息。与文献数据的值性以及杨氏模量测定,用我们的方法对典型的ITO / PEDOT:PSS/P3HT:PC 61 BM系统有很好的对应。 P3HT:PC 61 BM的混合分离到PC 61 BM丰富和P3HT丰富的domai纳秒。的PC 61 BM丰富和P3HT丰富域的机 ​​械性能是不同的,它允许为域归属的膜的表面上。更重要的是,机械和电气的数据相结合,允许相关的域结构的表面上的膜的膜的厚度通过测量与电性能变化。

Introduction

作为带来了一个焦点上OPV技术的最新突破,功率转换效率(PCE)的有机光伏(OPV)细胞(推在细胞水平的10%)3,在演唱会遵守与高通量和低成本的制造工艺4廉价的大面积的太阳能电池的制造的挑战可能的解决方案。 OPV材料在纳米尺度本质上是不均匀的。 OPV材料的纳米尺度的不均匀性和光电器件的性能有着密切的联系。因此,了解成分不均匀性,以及OPV材料的电性能OPV技术向前发展是极为重要的。自1986年以来已经发展成为原子力显微镜(AFM)表面形貌的高精度测量的工具。如今,技术材料的性能(杨氏模量,功能6-10工作,11行为ivity 13日至15日,12机电,等)的测量,正吸引着越来越多的关注。在OPV材料的情况下,本地的物相组成和电性能的相关性,揭示更好地了解有机太阳能电池的内部运作带来了希望。1,16-17基于原子力显微镜的高分辨率相技术能够归属8作为电性能,在聚合材料中的映射。因此,在原则上,聚合物相组合物(通过机械测量)18和电气性能的相关性的是可以使用基于AFM的技术。许多基于AFM的技术,材料的机械和电气性能的测量使用AFM探针和表面之间的接触面积不变的假设。这种假设经常失败,从而导致表面形貌之间的强相关性与机械/电气性能。最近,一种新的原子力显微镜为基础的技术高通量测量的机械的属性(PeakForce)19。 PeakForce的金枪鱼(变化的PeakForce方法)提供了一个平台,同时测量的样品的机械和电气性能。然而,PeakForce金枪鱼方法生产的机械和电气性能的地图,这通常是密切相关的,因为在测量过程中的接触下落不明变异。在本文中,我们提出了一个实验性协议,用于删除相关性,与不同的接触半径利用原子力显微镜的机械和电气性能,同时保持精确的测量。实现材料的电阻和杨氏模量的定量测量结果的协议。

Protocol

1。信号采集安装样品(无阴极聚合物太阳能电池(ITO / PEDOT:PC 61 BM PSS/P3HT))的商业模AFM(Veeco公司,圣巴巴拉,CA)配备了奈米级-V控制器。 安装导电原子力显微镜探针原子力显微镜探针持有人模。 创建AFM探针,样品和电压源之间的电连接。 路线的电流放大器的输出(电流信号),多模AFM偏转输出(力信号),多模的AFM样品高度的输出(距离信?…

Representative Results

上述的杨氏模量和电阻率的映射( 图3)本典型的测量结果。机械和电气性能的ITO / PEDOT:PSS/P3HT:PC 61 BM堆栈测定在负(-10 V)和正极(6 V)的电压施加到AFM探针。与静电相互作用的原子力显微镜探针与样品的成像伪影,利用原子力显微镜定量测量的功能特性,是一种常见的问题。在不同电压下的相似性测量的杨氏模量大小演示静电工件相对于如上所述的测量协议的鲁棒性。?…

Declarações

The authors have nothing to disclose.

Acknowledgements

MPN是感谢主任的奖学金计划提供财政支持。 ,MPN要感谢曾育志与发展的协议,用于太阳能电池加工的帮助。这项工作是在纳米材料研究中心,美国能源部科学办公室,办公室基础能源科学用户设施的合同号DE-AC02-06CH11357。

Materials

Name of Reagent/Material Company Catalog Number Comments
Plextronics inks Plexcore PV 1000
ITO-coated glass substrates Delta Technologies, Inc 25 Ohms/sq
30 MHz synthesized function generator Stanfor Research Systems DS345
Current amplifier Femto DLPCA-200
Multimode AFM Veeco, Santa Barbara, CA equipped with Nanoscope-V controller
DAQ card National Instruments NI-PCI-6115
Metal Pt probes RMNano 12Pt3008
MATLAB software Mathworks
LabView software National Instruments

Referências

  1. Chen, W., Nikiforov, M. P., Darling, S. B. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. , (2012).
  2. Dupont, S. R., Oliver, M., Krebs, F. C., Dauskardt, R. H. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells. Sol. Energy. 97, 171-175 (2012).
  3. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D. Solar cell efficiency tables (version 39). Progress in Photovoltaics. 20 (1), 12-20 (2012).
  4. Krebs, F. C., Gevorgyan, S. A., Alstrup, J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. Journal of Materials Chemistry. 19 (30), 5442-5451 (2009).
  5. Binnig, G., Quate, C. F., Gerber, C. Atomic Force Microscope. Physical Review Letters. 56 (9), 930-933 (1986).
  6. Hurley, D. C., Kopycinska-Muller, M., Kos, A. B., Geiss, R. H. Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods. Measurement Science & Technology. 16 (11), 2167-2172 (2005).
  7. Jesse, S., Nikiforov, M. P., Germinario, L. T., Kalinin, S. V. Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe. Applied Physics Letters. 93 (7), (2008).
  8. Nikiforov, M. P., Gam, S., Jesse, S., Composto, R. J., Kalinin, S. V. Morphology Mapping of Phase-Separated Polymer Films Using Nanothermal Analysis. Macromolecules. 43 (16), 6724-6730 (2010).
  9. Nikiforov, M. P., Jesse, S., Morozovska, A. N., Eliseev, E. A., Germinario, L. T., Kalinin, S. V. Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. Nanotechnology. 20 (39), (2009).
  10. Rabe, U., Amelio, S., Kopycinska, M., Hirsekorn, S., Kempf, M., Goken, M., Arnold, W. Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surface and Interface Analysis. 33 (2), 65-70 (2002).
  11. Nikiforov, M. P., Zerweck, U., Milde, P., Loppacher, C., Park, T. -. H., Uyeda, H. T., Therien, M. J., Eng, L., Bonnell, D. The effect of molecular orientation on the potential of porphyrin-metal contacts. Nano Letters. 8 (1), 110-113 (2008).
  12. Nikiforov, M. N., Brukman, M. J., Bonnell, D. A. High-resolution characterization of defects in oxide thin films. Applied Physics Letters. 93 (18), (2008).
  13. Kalinin, S. V., Karapetian, E., Kachanov, M. Nanoelectromechanics of piezoresponse force microscopy. Physical Review B. 70 (18), (2004).
  14. Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., Tokumoto, H. Nanoscale Visualization and Control of Ferroelectric Domains by Atomic-Force Microscopy. Physical Review Letters. 74 (21), 4309-4312 (1995).
  15. Nikiforov, M. P., Thompson, G. L., Reukov, V. V., Jesse, S., Guo, S., Rodriguez, B. J., Seal, K., Vertegel, A. A., Kalinin, S. V. Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment. Acs Nano. 4 (2), 689-698 (2010).
  16. Botiz, I., Darling, S. B. Optoelectronics using block copolymers. Materials Today. 13 (5), 42-51 (2010).
  17. Brabec, C. J., Heeney, M., McCulloch, I., Nelson, J. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chemical Society Reviews. 40 (3), 1185-1199 (2011).
  18. Karagiannidis, P. G., Kassavetis, S., Pitsalidis, C., Logothetidis, S. Thermal annealing effect on the nanomechanical properties and structure of P3HT: PCBM thin films. Thin Solid Films. 519 (12), 4105-4109 (2011).
  19. Sweers, K., vander Werf, K., Bennink, M., Subramaniam, V. Nanomechanical properties of alpha-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Research Letters. 6, (2011).
  20. Nikiforov, M. P., Darling, S. B. Improved conductive atomic force microscopy measurements on organic photovoltaic materials via mitigation of contact area uncertainty. Progress in Photovoltaics: Research and Applications. , (2012).
  21. Li, H. -. C., Rao, K. K., Jeng, J. -. Y., Hsiao, Y. -. J., Guo, T. -. F., Jeng, Y. -. R., Wen, T. -. C. Nano-scale mechanical properties of polymer/fullerene bulk hetero-junction films and their influence on photovoltaic cells. Solar Energy Materials and Solar Cells. 95 (11), 2976-2980 (2011).
  22. Mueller, C., Goffri, S., Breiby, D. W., Andreasen, J. W., Chanzy, H. D., Janssen, R. A. J., Nielsen, M. M., Radano, C. P., Sirringhaus, H., Smith, P., Stingelin-Stutzmann, N. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Advanced Functional Materials. 17 (15), 2674-2679 (2007).
  23. Kuila, B. K., Nandi, A. K. Physical, mechanical, and conductivity properties of poly(3-hexylthiophene)-montmorillonite clay nanocomposites produced by the solvent casting method. Macromolecules. 37 (23), 8577-8584 (2004).
  24. O’Connor, B., Chan, E. P., Chan, C., Conrad, B. R., Richter, L. J., Kline, R. J., Heeney, M., McCulloch, I., Soles, C. L., DeLongchamp, D. M. Correlations between Mechanical and Electrical Properties of Polythiophenes. Acs Nano. 4 (12), 7538-7544 (2010).
  25. Tahk, D., Lee, H. H., Khang, D. -. Y. Elastic Moduli of Organic Electronic Materials by the Buckling Method. Macromolecules. 42 (18), 7079-7083 (2009).
  26. Kuila, B. K., Nandi, A. K. Structural hierarchy in melt-processed poly(3-hexyl thiophene)-montmorillonite clay nanocomposites: Novel physical, mechanical, optical, and conductivity properties. Journal of Physical Chemistry B. 110 (4), 1621-1631 (2006).
  27. Nikiforov, M. P., Darling, S. B. Improved conductive atomic force microscopy measurements on organic photovoltaic materials via mitigation of contact area uncertainty. Progress in Photovoltaics: Research and Applications. , (2012).
  28. Kim, J. Y., Frisbie, D. Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends. Journal of Physical Chemistry C. 112 (45), 17726-17736 (2008).
  29. Bange, S., Kuksov, A., Neher, D., Vollmer, A., Koch, N., Ludemann, A., Heun, S. The role of poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) as a hole injection layer in a blue-emitting polymer light-emitting diode. Journal of Applied Physics. 104 (10), (2008).
check_url/pt/50293?article_type=t

Play Video

Citar este artigo
Nikiforov, M. P., Darling, S. B. Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM. J. Vis. Exp. (71), e50293, doi:10.3791/50293 (2013).

View Video