Summary

线性扩增介导的PCR - 未知侧翼DNA的遗传物质和表征本地化

Published: June 25, 2014
doi:

Summary

线性扩增介导的(LAM)-PCR方法是开发,以确定基因组中的整合型病毒载体的精确位置的方法。该技术已经发展成为学习中的基因治疗的患者中,新颖的矢量技术,T-细胞的多样性,癌症干细胞模型等生物安全克隆动力学的优越方法

Abstract

Linear-amplification mediated PCR (LAM-PCR) has been developed to study hematopoiesis in gene corrected cells of patients treated by gene therapy with integrating vector systems. Due to the stable integration of retroviral vectors, integration sites can be used to study the clonal fate of individual cells and their progeny. LAM- PCR for the first time provided evidence that leukemia in gene therapy treated patients originated from provirus induced overexpression of a neighboring proto-oncogene. The high sensitivity and specificity of LAM-PCR compared to existing methods like inverse PCR and ligation mediated (LM)-PCR is achieved by an initial preamplification step (linear PCR of 100 cycles) using biotinylated vector specific primers which allow subsequent reaction steps to be carried out on solid phase (magnetic beads). LAM-PCR is currently the most sensitive method available to identify unknown DNA which is located in the proximity of known DNA. Recently, a variant of LAM-PCR has been developed that circumvents restriction digest thus abrogating retrieval bias of integration sites and enables a comprehensive analysis of provirus locations in host genomes. The following protocol explains step-by-step the amplification of both 3’- and 5’- sequences adjacent to the integrated lentiviral vector.

Introduction

线性扩增介导的PCR(LAM-PCR)技术可识别和表征邻近任何来源的已知的DNA未知侧翼的DNA。更具体地,LAM-PCR方法已经开发出来,定位病毒载体整合位点(IS)宿主基因组1,2内。像逆转录病毒或转座子的遗传元件整合自己的基因组入在一个(半)随机方式3-6宿主基因组中。在许多情况下,它是决定性的确切地知道这些矢量一体化的立场。 LAM-PCR方法已被证明是优于像连接介导的PCR 7和它的变体或反向PCR 8的替代技术。该方法的灵敏度和鲁棒性源自载体基因组结和磁性选择的扩增的PCR产物的初始预扩增。像提到的替代方法,LAM-PCR依赖于使用限制性内切酶,引入偏差为9-11的检索能力。因此,可以在一个反应中检测出的IS剧目(在integrome)的一个子集。这种偏差是通过使用限制性内切酶9的合适组合的给定样品的平行分析最小化。最近,该技术的一个变种称为非限制性的LAM-PCR(nrLAM-PCR)已经开发出来,绕过使用限制性内切酶,并允许在单个反应9,12的样品的无偏的全基因组分析。

在过去,LAM-PCR方法已被用于鉴定致病逆转录病毒IS白血病引起在少数患者中的临床基因治疗试验13-15。从那时起,LAM-PCR已被改编以确定从其它整合载体(慢病毒载体,转座子)和还识别的被动结合像腺相关载体(AAV)或整合酶缺陷型慢病毒载体(IDLV)载体的集成模式IS 16 -21。 LAM-PCR方法的应用是广泛的传播:传统LY,该技术被广泛地用于研究基因修饰的细胞的克隆性组合物中已经历基因疗法的患者或解开他们的整合行为15,16,22-24评估新型载体系统的生物安全。近日,LAM-PCR启用确定特异性和脱靶设计师核酸酶的活性由IDLV诱捕法25。

此外,LAM-PCR方法可以非常方便地跟随转导的细胞的命运随着时间的推移在一个有机体。这允许识别原癌基因以及肿瘤抑制基因和还研究造血或癌症干细胞生物26-28。最后但并非最不重要的,LAM-PCR法适于研究T细胞受体多样性的人类29(和未公布的数据)。

该技术的固有功率是由所述方法连接到深度测序技术,使表征百万未知侧翼DNA的单核苷酸Ř增强esolution在整个基因组。在下面的协议中,我们描述了一步一步的扩增和鉴定未知侧翼DNA的模范,以确定慢病毒载体IS的。在协议中使用的寡核苷酸列于表1。提取的DNA的任何来源的或cDNA可以用作用于LAM-PCR和nrLAM-PCR的DNA模板。

Protocol

链接器的磁带1。准备(LC) 混合40微升LC1寡核苷酸( 表1),40微升LC2寡核苷酸( 表1中 ,用适当的限制性内切酶悬),110微升Tris-盐酸(100毫米,pH值7.5),和10微升250毫摩尔MgCl 2组成。 孵育在95℃下5分钟,让反应冷却下来慢慢至室温。加入300微升H 2 O和集中dsLinker-DNA在离心过滤器。加入80微升H 2 O至洗出液和分装10微升的准备盒式连?…

Representative Results

LAM-PCR结果在载体基因组路口放大与定义的片段大小为每个结。个体的PCR片段的大小取决于在基因组中的已知的DNA的位置与最近的限制性内切酶识别位点之间的距离。这允许通过凝胶电泳, 例如可视化扩增结的多样性分析的样品中。如果只有单一的(单克隆),几个(寡克隆)或多个(多克隆)频带上存在的凝胶。 LAM-PCR的结果,最好是由高分辨率凝胶电泳( 图2A)被观看,但…

Discussion

在LAM-PCR技术允许识别侧翼已知的DNA区域未知的DNA序列。因为高灵敏度从具有特异性的引物杂交的已知DNA序列中的结的预扩增得到的,能够扩增并检测甚至罕见路口下至单个细胞水平。相反,在多克隆情况LAM-PCR能够扩增数千种不同的结在一个单一的反应。

然而,由于使用了限制性内切酶的integrome只有一个子部分可以由LAM-PCR检测结与每一个特定的限制性内切酶的存在下进行分?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Funding was provided by the Deutsche Forschungsgemeinschaft (SPP1230, grant of the Tumor Center Heidelberg/Mannheim), by the Bundesministerium für Bildung und Forschung (iGene), by the VIth + VIIth Framework Programs of the European Commission (CONSERT, CLINIGENE and PERSIST). We thank Ina Kutschera for demonstrating the protocol technique in the video.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Taq DNA Polymerase Genaxxon Bioscience GmbH M3001.5000 Alternative Taq Polymerases may be used
PCR Buffer Qiagen 201203 Use of this buffer is recommended
dNTP-Mixture Genaxxon Bioscience GmbH M3015.4020 or any other dNTPs
Oligonucleotides (Primers) MWG Biotech HPLC purified
Dynabeads M-280 Streptavidin  Invitrogen 11206D
PBS Gibco 14190-086 0.1 % wt/vol BSA
6M LiCl Roth 3739.1 10 mM Tris-HCl  (pH 7.5)/1 mM EDTA
Tris-HCl, pH 7.5 USB Corporation  22637 or any other supplier
EDTA Applichem A1103,0250 or any other supplier
Klenow Polymerase Roche Diagnostics 10104523001
Hexanucleotide mixture Roche Diagnostics 11277081001
Restriction endonuclease NEB or any other supplier
Fast-Link DNA ligation kit Epicentre Biotechnologies LK11025
CircLigase ssDNA Ligase Kit Epicentre Biotechnologies CL4111K
NaOH Sigma-Aldrich 72068 or any other supplier
Agarose LE Roche Diagnostics 11685660001 or any other supplier
TBE buffer Amresco 0658 or any other supplier
Ethidium bromide Applichem A2273,0005 Ethidium bromide is mutagenic
100 bp DNA Ladder Invitrogen 15628-050 or any other DNA ladder
20 mM NaCl Sigma-Aldrich 71393-1L or any other supplier
Magna-Sep Magnetic Particle Separator  Life Technologies K158501 for use with 1.5 ml Tubes
Magna-Sep Magnetic Particle Separator  Life Technologies K158696 for use with 96 well plates
Amicon Ultra-0.5, Ultracel-30 membrane Millipore UFC503096
PerfectBlue Gelsystem Midi S PeqLab 40-1515 or other electrophoresis system 
TProfessional 96 Biometra 050-551 or other Thermocycler for 96-well plates
Orbital shaker KS 260 basic IKA 2980200 or other horizontal shaker
PCR softtubes 0.2 ml Biozym Scientific GmbH 711082 or other 0.2 ml PCR tubes
1.5 ml tubes Eppendorf 12682 or other 1.5 ml tubes
Gel documentation system PeqLab or any other gel documentation system
Nanodrop ND-1000 spectrophotometer Thermo Scientific ND-1000
Spreadex EL1200 precast gel Elchrom Scientific 3497
Submerged gel electrophoresis apparatus SEA 2000  Elchrom Scientific 2001E
2100 Electrophoresis Bioanalyzer Agilent Technologies G2939AA

Referências

  1. Schmidt, M., et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther. 12, 743-749 (2001).
  2. Schmidt, M., et al. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods. 4, 1051-1057 (2007).
  3. Schroeder, A. R., et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110, 521-529 (2002).
  4. Wu, X., Li, Y., Crise, B., Burgess, S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science. 300, 1749-1751 (2003).
  5. Vigdal, T. J., Kaufman, C. D., Izsvak, Z., Voytas, D. F., Ivics, Z. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol. 323, 441-452 (2002).
  6. Lewinski, M. K., et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, (2006).
  7. Mueller, P. R., Wold, B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science. 246, 780-786 (1989).
  8. Silver, J., Keerikatte, V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. Journal of virology. 63, 1924-1928 (1989).
  9. Gabriel, R., et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nature medicine. 15, 1431-1436 (2009).
  10. Harkey, M. A., et al. Multiarm high-throughput integration site detection: limitations of LAM-PCR technology and optimization for clonal analysis. Stem Cells Dev. 16, 381-392 (2007).
  11. Wang, G. P., et al. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic acids research. 36, (2008).
  12. Paruzynski, A., et al. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat. Protocols. 5, 1379-1395 (2010).
  13. Hacein-Bey-Abina, S., et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. , 3132-3142 (2008).
  14. Hacein-Bey-Abina, S., et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 302, 415-419 (2003).
  15. Howe, S. J., et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 118, 3143-3150 (2008).
  16. Cartier, N., et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 326, 818-823 (2009).
  17. Matrai, J., et al. Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology. 53, 1696-1707 (2011).
  18. Penaud-Budloo, M., et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. Journal of virology. 82, 7875-7885 (2008).
  19. Kaeppel, C., et al. A largely random AAV integration profile after LPLD gene therapy. Nature medicine. 19, 889-891 (2013).
  20. Voigt, K., et al. Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther. 20, 1852-1862 (2012).
  21. Yanez-Munoz, R. J., et al. Effective gene therapy with nonintegrating lentiviral vectors. Nature medicine. 12, 348-353 (2006).
  22. Boztug, K., et al. Stem-Cell Gene Therapy for the Wiskott-Aldrich Syndrome. N Engl J Med. 363, 1918-1927 (2010).
  23. Deichmann, A., et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest. 117, 2225-2232 (2007).
  24. Schwarzwaelder, K., et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest. 117, 2241-2249 (2007).
  25. Gabriel, R., et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 29, 816-823 (2011).
  26. Dieter, S. M., et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 9, 357-365 (2011).
  27. Montini, E., et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nature biotechnology. 24, 687-696 (2006).
  28. Zavidij, O., et al. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis. Stem Cells. 30, 1961-1970 (2012).
  29. Martins, V. C., et al. Thymus-autonomous T cell development in the absence of progenitor import. J Exp Med. 209, 1409-1417 (2012).
  30. Arens, A., et al. Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites. Hum Gene Ther Methods. 23, 111-118 (2012).
check_url/pt/51543?article_type=t

Play Video

Citar este artigo
Gabriel, R., Kutschera, I., Bartholomae, C. C., von Kalle, C., Schmidt, M. Linear Amplification Mediated PCR – Localization of Genetic Elements and Characterization of Unknown Flanking DNA. J. Vis. Exp. (88), e51543, doi:10.3791/51543 (2014).

View Video