Summary

可调节刚度,外固定支架的大鼠股骨截骨和节段性骨缺损模型

Published: October 09, 2014
doi:

Summary

One constraint of preclinical research in the field of bone repair is the lack of experimental control over the local mechanical environment within a healing bone lesion. We report the design and use of an external fixator for bone repair with the ability to change fixator stiffness in vivo.

Abstract

围绕断骨的愈合的力学环境是非常重要的,因为它决定的方式,将骨折愈合。在过去的十年里一直在通过病灶周围的固定稳定性改变力学环境改善骨愈合重要的临床利益。临床前动物研究在这方面的一个制约因素是缺乏实验控制了当地的力学环境中的大段缺损,以及他们截骨愈合的。在本文中,我们的设计和使用的外固定器的汇报,研究了大段骨缺损或截骨愈合。此设备不仅允许对骨病变可控制的轴向刚度,因为它可以治愈,但是它也使刚度在体内治疗过程中的变化进行的实验表明,该固定器能够保持一个5毫米的股骨缺损间隙在不受限制的笼中老鼠体内活性为至少8周。同样,我们没有观察到变形或感染,包括在整个治疗期间销感染。这些结果表明,我们的新研制的外固定器能够实现可再现的和标准化的稳定化,并大鼠体内大的骨缺损和各种尺寸截骨术的机械环境的改变。这证实了外固定器非常适合于使用在骨再生和修复的领域的大鼠模型的临床前研究调查。

Introduction

大量的研究已经提高了参与骨组织的修复1-6的生物学机制的理解。对骨修复的机械条件,如轴向,剪切和interfragmentary运动(的IFM)的影响已经被广泛地7-15研究。在过去的几年中,越来越多的研究开始出现用骨折,截骨术和大节段性骨缺损的体内模型,描述在骨愈合的力学环境的影响。因此,需要可靠的固定方法来获得可重复和可靠的研究成果。

周围的骨折愈合的力学环境是非常重要的,因为它决定的方式,将骨折愈合。因此,固定装置的选择是非常重要的,应根据不同的研究设计进行仔细选择,以及其它因素,如间隙大小和骨折的类型。该固定装置的机械性能再更重要的,当学习的大块骨缺损的骨性愈合,以建立一个固定的提供不仅遍及全重量的试验期带有一定的间隙大小,但也是一个理想的力学环境对骨愈合。外固定器在骨折和大骨缺损愈合的实验模型常用的,因为他们有比其他固定设备的优势。外固定器的主要优点是,它们允许在缺损部位在生物体内的机械环境的变化而二次干预,这可以通过在实验的过程中改变或调整该装置的稳定性杆来实现骨愈合的进展。此外,它允许对特定局部机械刺激的应用,以提高骨的修复,并且还提供了测量愈伤组织在体内的刚性的可能性。然而,这些设备也有一些缺点包括:软组织,感染和销断裂刺激。

不幸的是,这样的植入物是不提供“现成的”在植入物开发的时间,并调查被迫定制设计自己的固定器用于预期用途。因此,研究这方面的一个约束是缺乏实验控制中的大段缺损的局部力学环境,以及截骨术,因为它愈合。的外固定器的机械特性是由所定义,并且可以通过进行调制,大量的变量,包括:销,销的直径,销材料之间的距离,销,固定器杆的长度,固定器栏数的数目,固定架棒材,固定器杆的厚度和从骨表面到固定器杆(偏移)的距离。令人惊奇的是,研究仅缺乏可以发现,已经研究了各组分的机械贡献在啮齿类动物的研究16,18,28使用固定器或整体框架结构。例如,一项研究的结果表明,主要的因素,在确定的固定结构的总刚度之一是相对于它们的偏移量,直径和材料特性28把持销的灵活性。从上述研究结果清楚地表明,知道由固定装置提供的机械环境中是非常重要的,然而,在许多情况下,不详细调查。本文报道的设计,规格和植入体内的外固定器,解决这个问题的。此固定器还允许机械环境愈合的进展,一个属性,可以在体内治疗过程中的不同阶段的机械性刺激的敏感性的研究的调制。此外,还有强加控制的和可重复的当地技工人的环境中,其辅助功能也允许这样的环境中的骨愈合的不同阶段的调制。

我们设计的固定器是基于外固定,因而被广泛用于骨折固定16-21和大型缺损模型的实验动物22-27。我们的外固定架和文献报道的其他现有设计之间的不同之处在于它们的稳定性条用螺丝紧固有得紧用克氏针(克氏针)。这种类型的设计,需要螺钉被每两周重新拧紧(有时甚至每周一次),以确保该偏移的距离保持为加载是通过负重,以防止稳定性杆的松动施加。如果发生这样的松动,它允许不必要的额外负荷条件,如角,横向和扭转剪切动作,愈合骨(根据个人经验,与researche通信RS),认识到这一点,外部固定器被设计为使得需要改变固定器的刚度时,它会通过除去附着在那里的安装销被嵌入在主模块的连接元件来实现的。与新的外固定器样机进行体内试验试验,以确保其符合之前的大批量制造的所有提出的要求。

其主要目的为本文是提出一种新的手术方法,用于大的骨缺损和骨切开术的大鼠与在愈合过程中改变刚度体内的能力的外固定器。这种固定方法是在体内应用对大鼠股骨。

Protocol

动物保健和实验方案如下,根据美国国立卫生研究院的指导方针,并经贝斯以色列女执事医疗中心实验动物管理和使用委员会,马萨诸塞州波士顿。 (协议编号:098-2009) 1,准备手术材料和仪器消毒用于执行使用前手术所有手术材料和仪器。包所需材料,使用或不使用工具托盘,折叠的布或纸包裹内有密封胶带釜蒸汽灭菌。将高压釜的温度应在125-135°C下的灭菌时间2…

Representative Results

设计规格大鼠股骨与外部固定系统的稳定化使得从0.5至5mm的创建截骨的。外固定支架系统是由聚醚醚酮(PEEK – [主体])锁定外固定器和钛 – 铝 – 铌合金(TAN – [固定栓]),它提供了一个简单,重复性好,可调节的设计,并在四个不同的刚度可供选择:10,40,70和100%(100%为标准,最严格的固定器( 图7)根据各研究者的研究需求,无论他们将不得不做植入刚度?…

Discussion

手术过程中最关键的步骤来创建一个大的骨缺损是:1)选择适当的体重的大鼠相匹配的外固定器的大小; 2)维持在手术过程中的无菌环境;和3)以下的外科手术过程的协议。

本研究的主要目标是设计,制造和对大鼠股骨大缺陷模型表征一个新的,可变刚性的外固定器,并使用此固定器在确定在愈合过程中的生物和机械因素之间的相互作用。新的定位器的机械性能进行了检查?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由AO基金会(S-08-42G)和RISystem公司的支持。

我们想扩展一个非常大的“谢谢!”给Stephan Zeiter队在敖研究所达沃斯,瑞士正在让我们用自己的或设施为这个手术的拍摄如此宽松。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
RatExFix simple 100% RISystem AG Davos, Switzerland RIS.612.120
RatExFix simple 70% RISystem AG Davos, Switzerland RIS.612.123
RatExFix simple 40% RISystem AG Davos, Switzerland RIS.612.121
RatExFix simple 10% RISystem AG Davos, Switzerland RIS.612.122
RatExFix Connection element 100% RISystem AG Davos, Switzerland RIS.612.130
RatExFix Connection element 70% RISystem AG Davos, Switzerland RIS.612.131
RatExFix Connection element 40% RISystem AG Davos, Switzerland RIS.612.132
RatExFix Connection element 10% RISystem AG Davos, Switzerland RIS.612.133
RatExFix Main body RISystem AG Davos, Switzerland RIS.611.101
RatExFix InterlockingScrew RISystem AG Davos, Switzerland RIS.412.110
RatExFix Mounting pin 0.85 mm RISystem AG Davos, Switzerland RIS.412.100
RatExFix Saw Guide 100% 5 mm RISystem AG Davos, Switzerland RIS.312.100
Accu Pen 6V+ RISystem AG Davos, Switzerland RIS.390.211
HandDrill RISystem AG Davos, Switzerland RIS.390.130
Drill Bit 0.79 mm RISystem AG Davos, Switzerland RIS.593.203
Gigly wire saw 0.22 mm RISystem AG Davos, Switzerland RIS.590.100
Square box wrench 0.70 mm RISystem AG Davos, Switzerland RIS.590.112
Square box wrench 0.50 mm RISystem AG Davos, Switzerland RIS.590.111
Centering bit 1.00 mm RISystem AG Davos, Switzerland RIS.592.205
Scalpel Blade handle Fine Science tools
Scalpel Blade (Size 15) Fisher Scientific
Tissue Forceps Fine Science tools
Scissors Fine Science tools
Retractor Fine Science tools
Needle Holder Fine Science tools
Henahan Elevator Fine Science tools
S-shape curved dissecting and ligature forceps  Fine Science tools 2
Dressing Forceps Fine Science tools 2
Sterile Fenestrated drape Fisher Scientific for surgery
Sterile gauze Fisher Scientific for surgery
5 ml syringe  Fisher Scientific  for irrigation of defect
24-27G needle  Fisher Scientific  for irrigation of defect
1cc Insulin syringes  Fisher Scientific for drug injections
sterile saline  Fisher Scientific for bone defect irrigation
sterile gloves Fisher Scientific to perform surgeries
chlorohezadine Fisher Scientific disinfecting solution for surgical site
Vicryl suture 4-0 with SH-1 Fisher Scientific to suture muscle 
Ethibond suture 3-0  Fisher Scientific to suture skin
Isofluorine Sigma-Aldrich for anesthesia
Buprenorphine Sigma-Aldrich analgesia during and after the surgery
Cefazolin Sigma-Aldrich antibiotic during and after the surgery 
Sprague-Dawley Rats or any other strain Charles River Laboratories International, Inc. (Wilmington, MA USA) 

Referências

  1. Einhorn, T. A., Lane, J. M., Burstein, A. H., Kopman, C. R., Vigorita, V. J. The healing of segmental bone defects induced by demineralized bone matrix. A radiographic and biomechanical study. J Bone Joint Surg Am. 66, 274-279 (1984).
  2. Feighan, J. E., Davy, D., Prewett, A. B., Stevenson, S. Induction of bone by a demineralized bone matrix gel: a study in a rat femoral defect model. J Orthop Res. 13, 881-891 (1995).
  3. Hunt, T. R., Schwappach, J. R., Anderson, H. C. Healing of a segmental defect in the rat femur with use of an extract from a cultured human osteosarcoma cell-line (Saos-2). A preliminary report. J Bone Joint Surg Am. 78, 41-48 (1996).
  4. Jazrawi, L. M., et al. Bone and cartilage formation in an experimental model of distraction osteogenesis. J Orthop Trauma. 12, 111-116 (1998).
  5. Probst, A., Jansen, H., Ladas, A., Spiegel, H. U. Callus formation and fixation rigidity: a fracture model in rats. J Orthop Res. 17, 256-260 (1999).
  6. Richards, M., Huibregtse, B. A., Caplan, A. I., Goulet, J. A., Goldstein, S. A. Marrow-derived progenitor cell injections enhance new bone formation during distraction. J Orthop Res. 17, 900-908 (1999).
  7. Aro, H. T., Chao, E. Y. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression. Clin Orthop Relat Res. , 8-17 (1993).
  8. Augat, P., et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 21, 1011-1017 (2003).
  9. Augat, P., et al. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J Orthop Res. 16, 475-481 (1998).
  10. Claes, L., Augat, P., Suger, G., Wilke, H. J. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 15, 577-584 (1997).
  11. Claes, L., Eckert-Hubner, K., Augat, P. The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch Surg. 388, 316-322 (2003).
  12. Duda, G. N., et al. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res. , 163-172 (2002).
  13. Goodship, A. E., Watkins, P. E., Rigby, H. S., Kenwright, J. The role of fixator frame stiffness in the control of fracture healing. An experimental study. J Biomech. 26, 1027-1035 (1993).
  14. Williams, E. A., Rand, J. A., An, K. N., Chao, E. Y., Kelly, P. J. The early healing of tibial osteotomies stabilized by one-plane or two-plane external fixation. J Bone Joint Surg Am. 69, 355-365 (1987).
  15. Wu, J. J., Shyr, H. S., Chao, E. Y., Kelly, P. J. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg Am. 66, 1258-1264 (1984).
  16. Harrison, L. J., Cunningham, J. L., Stromberg, L., Goodship, A. E. Controlled induction of a pseudarthrosis: a study using a rodent model. J Orthop Trauma. 17, 11-21 (2003).
  17. Kaspar, K., Schell, H., Toben, D., Matziolis, G., Bail, H. J. An easily reproducible and biomechanically standardized model to investigate bone healing in rats, using external fixation. Biomed Tech (Berl). 52, 383-390 (2007).
  18. Mark, H., Bergholm, J., Nilsson, A., Rydevik, B., Stromberg, L. An external fixation method and device to study fracture healing in rats. Acta Orthop Scand. 74, 476-482 (2003).
  19. Mark, H., Nilsson, A., Nannmark, U., Rydevik, B. Effects of fracture fixation stability on ossification in healing fractures. Clin Orthop Relat. Res. , 245-250 (2004).
  20. Mark, H., Rydevik, B. Torsional stiffness in healing fractures: influence of ossification: an experimental study in rats. Acta Orthop. 76, 428-433 (2005).
  21. McCann, R. M., et al. Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res. 26, 384-393 (2008).
  22. Betz, O. B., et al. Direct percutaneous gene delivery to enhance healing of segmental bone defects. J Bone Joint Surg Am. 88, 355-365 (2006).
  23. Cullinane, D. M., et al. Induction of a neoarthrosis by precisely controlled motion in an experimental mid-femoral defect. J Orthop Res. 20, 579-586 (2002).
  24. Dickson, G. R., Geddis, C., Fazzalari, N., Marsh, D., Parkinson, I. Microcomputed tomography imaging in a rat model of delayed union/non-union fracture. J Orthop Res. 26, 729-736 (2008).
  25. Jager, M., Sager, M., Lensing-Hohn, S., Krauspe, R. The critical size bony defect in a small animal for bone healing studies (II): implant evolution and surgical technique on a rat’s femur. Biomed Tech (Berl). 50, 137-142 (2005).
  26. Betz, V. M., et al. Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum Gene Ther. 18, 907-915 (2007).
  27. Glatt, V., et al. Ability of recombinant human bone morphogenetic protein 2 to enhance bone healing in the presence of tobramycin: evaluation in a rat segmental defect model. J Orthop Trauma. 23, 693-701 (2009).
  28. Willie, B., Adkins, K., Zheng, X., Simon, U., Claes, L. Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J Orthop Res. 27, 687-693 (2009).
  29. Hess, T., Hopf, T., Fritsch, E., Mittelmeier, H. Comparative biomechanical studies of conventional and self-tapping cortical bone screws. Z Orthop Ihre Grenzgeb. 129, 278-282 (1991).
  30. Glatt, V., Evans, C. H., Matthys, R. Design, characterisation and in vivo testing of a new, adjustable stiffness, external fixator for the rat femur. Eur Cell Mater. 23, 289-298 (2012).
  31. Glatt, V., et al. Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J Bone Joint Surg Am. 94, 2063-2073 (2012).
check_url/pt/51558?article_type=t

Play Video

Citar este artigo
Glatt, V., Matthys, R. Adjustable Stiffness, External Fixator for the Rat Femur Osteotomy and Segmental Bone Defect Models. J. Vis. Exp. (92), e51558, doi:10.3791/51558 (2014).

View Video