Summary

动态肩胛运动学使用的肩峰标记集群尽量减少与皮肤运动伪影测量

Published: February 10, 2015
doi:

Summary

这份报告介绍了如何采用采用被动标志动作捕捉设备时获得肩胛运动学的肩峰标记集群方法的细节。如在文献中进行了描述,该方法提供肩胛运动学一个健壮的,非侵入性的,三维的,动态的和有效的测量,尽量减少皮肤的运动伪影。

Abstract

动态肩胛运动学测量是复杂的,由于在皮肤表面下方的肩胛骨的滑动性质。这项研究的目的是为了清楚地描述确定肩胛运动学使用无源标记物运动捕捉系统时,考虑为错误的可能影响测量的有效性和可靠性的来源的肩峰标记簇(AMC)方法。 AMC方式包括将标记簇在后部肩峰,并通过解剖标志校准相对于所述标记簇有可能获得肩胛运动学测量值有效。该方法的可靠性2天之间进行了检查在一组的,因为它们进行的臂抬高15健康个体(年龄19-38岁,8名男性),以120℃,并降低在额叶,肩胛和矢状平面。结果表明,日之间的可靠性是有利于向上旋转肩胛骨(系数MULT的IPLE相关性; CMC = 0.92)和后倾(CMC = 0.70),但公平在手臂抬高阶段内旋(CMC = 0.53)。波形误差较低向上旋转(2.7°至4.4°)和后倾斜(1.3°至2.8°),相对于内旋(5.4°至7.3°)。在降低阶段的可靠性媲美在海拔阶段观察到的结果。如果在这项研究中列出的协议遵守,对AMC的高度和手臂的运动降低阶段期间提供向上旋转和后倾的可靠测量。

Introduction

肩胛运动学的客观,定量测定可以在在肩部撞击2-8观察到臂抬高提供与肩功能障碍相关联的异常的运动模式,如减少向上旋转,后倾斜的评估。肩胛运动学测量,但是,是困难的,因为骨骼的深位置和滑翔自然皮肤表面1之下。安装反光标记过的解剖标志不充分跟踪肩胛骨,因为它下滑皮肤表面之下9典型的运动测量技术。各种方法已被采用在整个文献中,克服这些困难,包括;成像(X射线或磁共振)10-14,测角仪15,16,骨销钉17-22,手动触诊23,24,和肩峰方法3,5,19,25。每一种方法,然而,也有其局限性,其中包括:前曝光辐射,在二维图像为基础的分析的情况下的投影误差,需要反复肩胛骨的位置的主观解释,是静态的性质或具有高度侵入性( 例如骨引脚)。

中的溶液,以克服这些困难的是采用其中一个电磁传感器安装肩峰25,骨的平坦部分,其在前方肩胛骨从脊柱领先最外侧部分延伸的平坦部肩峰方法肩胛骨。使用肩峰方法背后的原理构思是减少皮肤的运动伪影,因为肩峰已经显示出具有最少量的皮肤运动伪影比其他网站上肩胛骨26。肩峰方法是非侵入性的,并提供肩胛运动学动态三维测量。验证研究已经显示肩峰方法臂埃尔期间是有效的高达120°使用电磁传感器17,27时evation阶段。当使用基于标记的动作捕捉装置的一系列排列成簇,肩峰标记簇(AMC)的标记,是必要的,已被证明使用活性标志物的动作捕捉系统28时是有效的,并同时使用的无源标记物在手臂抬高和手臂降低29动作捕捉系统。

使用AMC的带有被动标记的动作捕捉装置,用于测量肩胛运动学已经用来评估以下内容的介入来解决肩部撞击30在肩胛运动学变化。的有效使用这种方法,然而,依赖于准确地施加标记的簇的能力,其位置已被证明影响的结果31,校准解剖学界标32和确保臂动作内的运动的有效范围( 低于120°手臂抬高)29。它也有人建议将标记簇的再施用,使用有源基于标记的动作捕捉系统的时候,被认为是增加了错误的来源为肩胛后倾斜28。中,因此,重要的是建立肩峰方法的日间可靠性,以确保它提供肩胛运动学的稳定措施。确保测量是可靠将使变化肩胛运动学,由于干预,例如,要被测量和检查。用于测量肩胛运动学的方法已在别处29,33描述本研究的目的是为使用被动标记运动捕捉系统应用这些方法,并考虑到误差的潜在来源提供一步一步的指导和参考工具,并且检查测量方法的可靠性。

Protocol

注:使用人类参与者批准健康科学伦理委员会的才干在南安普敦大学。所有参与者签署同意书之前的数据收集展开。在这项研究中运动提供的数据使用由12台摄像机被动标志运动捕捉系统记录; 6 400万像素的摄像头,并在120赫兹的采样频率运行6个16万像素的摄像头。 1.参与者准备要求受试者以消除他们的上身衣服或佩戴运动胸罩,马甲,或者露肩顶部。它能使衣服不干?…

Representative Results

十五与会者谁没有已知的肩膀,颈部或手臂受伤的历史被招入的研究( 表2)。为了评估内部信度(间天),参加者出席了至少24小时,最长7天分开的两个数据收集会话。在每个数据采集时段,同一人的协议,用于连接反光标记,肩峰标记集群,解剖标志校准,上面详细。使用多个相关(CMC)37的系数的运动波形,从动态试验中获得的可靠性进行评价。波形的测量误差被用来?…

Discussion

方法的确定肩胛运动学的选择是至关重要的,考虑的有效性,可靠性和适宜性进行研究性学习应给予。各种方法已被采用在整个文献,但每一种方法都有其局限性。肩峰标记簇通过提供肩胛骨的非侵入性的动态运动测量克服了许多这些限制,诸如从2D成像或要求肩胛骨的位置的重复解释投影误差。然而,该AMC方式仍然容易受到皮肤运动伪影,尤其是在较高的臂的仰角和使成问题的方法,在这些较?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work lies within the multidisciplinary Southampton Musculoskeletal Research Unit (Southampton University Hospitals Trust/University of Southampton) and the Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis. The authors wish to thank their funding sources; Arthritis Research UK for funding of laboratory equipment (Grant No: 18512) and Vicon Motion System, Oxford UK for providing funding for a PhD studentship (M.Warner). The authors also wish to thank the participants, and Kate Scott and Lindsay Pringle for their help with participant recruitment.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Passive marker capture system Vicon Motion Systems N/A
Nexus Vicon Motion Systems N/A Data capture software
Bodybuilder Vicon Motion Systems N/A Modeling software
14 mm retro reflective markers Vicon Motion Systems VACC-V162B
6.5mm retro reflective markers Vicon Motion Systems VACC-V166
Calibration wand Vicon Motion Systems N/A
Plastic base N/A N/A Constructed 'in-house'
Matlab Mathworks N/A Numerical modelling software

Referências

  1. Kibler, W. B., et al. Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the ‘scapular summit’. British Journal of Sports Medicine. 47, 877-885 (2013).
  2. Luckasiewicz, A. C., McClure, P. W., Michener, L. A., Pratt, N., Sennett, B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. Journal of Orthopaedic & Sports Physical Therapy. 29, 574-586 (1999).
  3. Ludewig, P. M., Cook, T. M. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Physical Therapy. 80, 276-291 (2000).
  4. McClure, P. W., Bialker, J., Neff, N., Williams, G., Karduna, A. R. Shoulder function and 3-dimensional kinematics in people with shoulder impingement syndrome before and after a 6-week exercise program. Physical Therapy. 84, 832-848 (2004).
  5. Lin, J. J., et al. Functional activity characteristics of individuals with shoulder dysfunctions. Journal of Electromyography and Kinesiology. 15, 576-586 (2005).
  6. Tate, A. R., McClure, P. W., Kareha, S., Irwin, D., Barbe, M. F. A clinical method for identifying scapular dykinesis, Part 2: Validity. Journal of Athletic Training. 44, 165-173 (2009).
  7. Timmons, M. K., et al. Scapular kinematics and subacromial-impingement syndrome: a meta-analysis. Journal of Sports Rehabilitation. 21, 354-370 (2012).
  8. Endo, K. Y. K., Yasui, N. Influence of age on scapulo-thoracic orientation. Clinical Biomechanics. 16, 1009-1013 (2004).
  9. Lovern, B., Stroud, L. A., Evans, R. O., Evans, S. L., Holt, C. A. Dynamic tracking of the scapula using skin-mounted markers. Proceedings of the Institute of Mechanical Engineers. 223, 823-831 (2009).
  10. Inman, V. T., Sanders, J. B., Abbott, L. C. Observations on the function of the shoulder joint. Journal of Bone and Joint Surgery (Am). 26, 1-30 (1944).
  11. Saha, A. K. Mechanics of elevation of the glenohumeral joint. Acta Orthopaedica Scandanavia. 44, 668 (1973).
  12. Freedman, L., Munro, R. R. Abduction of the arm in the scapular plane: scapular and glenohumeral movements. A roentgenographic study. Journal of Bone and Joint Surgery (Am). 48, 1503-1510 (1966).
  13. Poppen, N. K., Walker, P. S. Normal and abnormal motion of the shoulder. Journal of Bone and Joint Surgery (Am). 58, 195-201 (1976).
  14. Graichen, H., et al. Magnetic resonance-based motion analysis of the shoulder during elevation). Clinical Orthopedic Related Research. 370, 154-163 (2000).
  15. Youdas, J. W., Carey, J. R., Garrett, T. R., Suman, V. J. Reliability of goniometric measurements of active arm elevation in the scapula plane obtained in a clinical setting. Arch. Phys. Med. Rehabil. 75, 1137-1144 (1994).
  16. Doody, S. G., Freedman, L., Waterland, J. C. Shoudler movement during abduction in the scapula plane. Arch. Phys. Med. Rehabil. 51, 595-604 (1970).
  17. Karduna, A. R., McClure, P. W., Michener, L. A., Sennett, B. Dynamic measurements of three-dimensional scapular kinematics: a validation study. Journal of Biomechanical Engineering. 123, 184-191 (2001).
  18. McClure, P. W., Michener, L. A., Sennett, B., Karduna, A. R. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. Journal of Shoulder and Elbow Surgery. 10, 269-277 (2001).
  19. Bourne, D. A., Choo, A. M. T., Regan, W. D., MacIntyre, D. L., Oxland, T. R. Three-dimensional rotation of the scapula during functional movements: an in vivo study in healthy volunteers. Journal of Shoulder and Elbow Surgery. 16, 150-162 (2007).
  20. Braman, J. P., Engel, S. C., LaPrade, R. F., Ludewig, P. M. In vivo assessment of scapulohumeral rhythm during unconstrained overhead reaching in asymptomatic subjects. Journal of Shoulder and Elbow Surgery. 16, 960-967 (2009).
  21. Ludewig, P. M., Hassett, D. R., LaPrade, R. F., Camargo, J. A., Braman, J. P. Comparison of scapular local coordinate systems. Clinical Biomechanics. 25, 415-421 (2010).
  22. Ludewig, P. M., et al. Motion of the shoulder complex during multiplanar humeral elevation. The Journal of Bone and Joint Surgery. 91, 378-389 (2009).
  23. Johnson, G. R., Stuart, P. R., Mitchell, S. A method for the measurement of three-dimensional scapular movement. Clinical Biomechanics. 8, 269-274 (1993).
  24. Helm, F. C., Pronk, G. M. Three-dimensional recording and description of motions of the shoulder mechanism. Journal of Biomechanical Engineering. 117, 27-40 (1995).
  25. McQuade, K. J., Smidt, G. L. Dynamic Scapulohumeral rhythm: The effects of external resistance during elevation of the arm in the scapular plane. Journal of Orthopaedic & Sports Physical Therapy. 27, 9 (1998).
  26. Matsui, K., Shimada, K., Andrew, P. D. Deviation of skin marker from bone target during movement of the scapula. Journal of Orthopaedic Science. 11, 180-184 (2006).
  27. Meskers, C. G. M., Jvan de Sande, M. A., de Groot, J. H. Comparison between tripod and skin-fixed recording of scapular motion. J. Biomech. 40, 941-948 (2007).
  28. Andel, C. J., van Hutten, K., Eversdijk, M., Veeger, D. J., Harlaar, J. Recording scapular motion using an acromion marker cluster. Gait and Posture. 29, 123-128 (2009).
  29. Warner, M. B., Chappell, P. H., Stokes, M. J. Measuring scapular kinematics during arm lowering using the acromion marker cluster. Hum. Mov. Sci. 31, 386-396 (2012).
  30. Worsley, P., et al. Motor control retraining exercises for shoulder impingement: effects on function, muscle activation, and biomechanics in young adults. Journal of Shoulder and Elbow Surgery. 22, e11-e19 (2013).
  31. Shaheen, A. F., Alexander, C. M., Bull, A. M. J. Effects of attachment position and shoulder orientation during calibration on the accuracy of the acromial tracker. J. Biomech. 44, 1410-1413 (2011).
  32. Prinold, J. A. I., Shaheen, A. F., Bull, A. M. J. Skin-fixed scapula trackers: A comparison of two dynamic methods across a range of calibration positions. J. Biomech. 44, 2004-2007 (2011).
  33. Wu, G., et al. ISB recommendation on definitions of joint coordinate systems of the various joints for the reporting of human joint motion – Part II: shoulder, elbow, wrist and hand. J. Biomech. 38, 981-992 (2005).
  34. Karduna, A. R., McClure, P. W., Michener, L. A. Scapular kinematics: effects of altering the Euler angle sequence of rotations. J. Biomech. 33, 1063-1068 (2000).
  35. Veeger, H. E. J. The position of the rotation center of the glenohumeral joint. J. Biomech. 33, 1711-1715 (2000).
  36. Doorenbosch, C. A. M., Harlaar, J., Veeger, H. E. J. The globe system: an unambiguous description of shoulder positions in daily life movements. J. Rehabil. Res. Dev. 40, 147-156 (2003).
  37. Kadaba, M. P., et al. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. Journal of Orthopaedic Research. 7, 849-860 (1989).
  38. Schwartz, M. H., Trost, J. P., Wervey, R. A. Measurement and management of errors in quantitative gait data. Gait and Posture. 20, 196-203 (2004).
  39. Jaspers, E., et al. The reliability of upper limb kinematics in children with hemiplegic cerebral palsy. Gait and Posture. 33, 568-575 (2011).
  40. Thigpen, C. A., Gross, M. T., Karas, S. G., Garrett, W. E., Yu, B. The repeatability of scapular rotations across three planes of humeral elevation. Research in Sports Medicine. 13, 181-198 (2005).
  41. Groot, J. H. The variability of shoulder motions recorded by means of palpation. Clinical Biomechanics. 12, 461-472 (1997).
check_url/pt/51717?article_type=t

Play Video

Citar este artigo
Warner, M. B., Chappell, P. H., Stokes, M. J. Measurement of Dynamic Scapular Kinematics Using an Acromion Marker Cluster to Minimize Skin Movement Artifact. J. Vis. Exp. (96), e51717, doi:10.3791/51717 (2015).

View Video