Summary

培养<em>秀丽隐杆线虫</em >在无菌液体介质与创造转基因蠕虫通过微粒轰击

Published: August 02, 2014
doi:

Summary

线虫通常生长在固体琼脂平板或液体培养基接种大肠杆菌大肠杆菌 。为了防止细菌副产品混杂毒理学和营养研究,我们利用的无菌液体介质,CeHR,成长和同步大量的蠕虫病毒对各种下游应用。

Abstract

在这个协议中,我们提出了所需的材料,并作出修改C程序的。Ëlegans习惯化和媒介的复制(mCeHR)。此外,该步骤用于暴露和驯化C。生长在大肠杆菌线虫大肠杆菌对无菌液体介质描述。最后,利用无菌C.下游实验线虫说明这个程序的优点。分析并确定C的能力线虫营养需求是由不断增长的N2野生型蠕虫在无菌液体介质具有不同的血红素浓度的说明。这个过程可以与其它营养物质被复制到确定为蠕虫生长和发育的最佳浓度,或者确定药物治疗的毒理效应。不同的血红素浓度对野生型蠕虫生长的影响,通过定性显微镜观察和定量t一下确定他的蠕虫病毒,在每个血红素浓度上升的。此外,不同的养分浓度的影响可以通过利用表达的变化感兴趣的养分回应荧光传感器蠕虫检测。此外,大量的蠕虫被容易地制造,适用于使用微粒轰击转基因线虫的产生。

Introduction

土壤线虫, 线虫 ,是在众多的研究中所使用的遗传毒理学一个强大的模式生物。作为其第1 mm的尺寸,四天,便于栽培的快速生成时间,以及大的后代数量结果,这些线虫已被用于许多遗传和药理屏1,2。研究人员利用这个蠕虫利用来识别分子和保守的途径在脊椎动物系统。这些途径包括细胞死亡信号,老化和促进新陈代谢的途径,以及神经系统3-6。另外,C的透明度线虫允许使用荧光蛋白记者,它可以直接可视化,分 ​​析基因表达模式和蛋白质定位的转基因品系的产生。

在许多研究中这种线虫培养使用线虫生长培养基(NGM)板一个固体琼脂为基础的表面或升iquid培养物接种有大肠杆菌作为食物来源7,8。这些细菌的食物来源可以混淆生化和毒理学研究,细菌副产品影响结果的解释干扰。为了避免这些复合效应,C.线虫可以培养在无菌液体介质内,不含细菌作为食物来源的。使用这种媒体,我们成功地培养数以百万计的高度同步的蠕虫许多标准C。线虫协议,包括在C差异调节基因芯片分析线虫暴露于不同浓度的血红素和生产利用基因轰击转基因蠕虫。这种介质化学定义和由埃里克·克莱格博士9制定了原来的配方修改。使用这种mCeHR媒体,我们已经成功地确定参与血红素的动态平衡的基因,称为血红素反应基因(HRG)10,其将还没有可行的,其中利用接种有大肠杆菌 NGM琼脂平板上正常生长条件大肠杆菌

在这个协议中,我们描述的程序,引入和维护C。生长在大肠杆菌线虫大肠杆菌的无菌mCeHR并利用此方法来获得大量的蠕虫病毒用于生产转基因C。使用微粒轰击线虫线。这表明使用无菌介质中,用于确定C的营养需求的效用,我们也存在研究线虫利用血红素作为一个例子。这些研究表明,利用mCeHR介质允许对大量C的快速增长线虫由蠕虫的研究人员利用许多下游应用。

Protocol

1,蠕虫菌株 C.获得线虫野生型布里斯托尔 N2菌株的秀丽隐杆线虫遗传学中心(CGC)(http://www.cbs.umn.edu/cgc),并保持他们在NGM板接种大肠杆菌大肠杆菌菌株OP50 7。注意:转基因虫株IQ6011(Phrg-1 :: GFP),如前所述11利用所产生。 IQ6011可从相应的作者提出要求。 2:改性C的线虫居住和繁殖培…

Representative Results

C.培养在营养成分的测定无菌液体介质辅助工具所要求的蠕虫,而不由大肠杆菌产生的次生代谢产物的干扰线虫大肠杆菌 。野生型N2蠕虫使其恢复到mCeHR媒体三代以内并呈增长媲美生长在NGM细菌平板蠕虫。事实上,这些蠕虫成为4天内为带有3.5天,生长在OP50细菌的蠕虫相比,妊娠。 使用mCeHR的一个优点被认为在研究,审查这些蠕虫14的确切营养需要?…

Discussion

在这个协议中,我们提出一个修改的无菌液体介质mCeHR,允许快速下线虫一代生产大量的蠕虫病毒。该媒体展示了几个优点蠕虫生长没有污染E。大肠杆菌或细菌的副产品和可被利用的营养和毒理学研究。利用E大肠杆菌或其他细菌在这些研究中有几个缺点。例如,细菌的生长可以在各种条件下的改变和细菌代谢可能正在检测的分子,混杂结果的解释。因此,在确定的培…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由HealthGrants DK85035和DK074797(H)全国学院的支持。

Materials

MgCl2.6H2O Sigma M-2393
Sodium citrate Sigma S-4641
Potassium citrate.H2O Sigma P-1722
CuCl2.2H2O Fisher C455-500
MnCl2.4H2O Fisher M87-100
ZnCl2 Sigma Z-0152
Fe(NH4)2(SO4)2.6H2O Sigma F-1018
CaCl2.2H2O Fisher C70-500
Adenosine 5 -monophosphate, sodium salt Sigma A-1752
Cytidine 5 -phosphate Sigma C-1006
Guanosine 2 – and3  -monophosphate Sigma G-8002
Uridine 5 -phosphate, disodium salt Sigma U-6375
Thymine  Sigma T0376
N-Acetylglucosamine Sigma A3286
DL-Alanine Fisher S25648 
p-Aminobenzoic Acid Sigma A-9878
Biotin Sigma B-4639
Cyanocobalamine (B-12) Sigma V-2876
Folinate (Ca)  Sigma F-7878
Niacin Sigma N-0761
Niacinamide Sigma N-3376
Pantetheine Sigma P-2125
Pantothenate (Ca) Sigma P-6292
Pteroylglutamic Acid (Folic Acid) ACRCS 21663-0100
Pyridoxal 5'-phosphate Sigma P-3657
Pyridoxamine.2HCl Sigma P-9158
Pyridoxine.HCl Sigma P-6280
Riboflavin 5-PO4(Na) Sigma R-7774
Thiamine.HCl Sigma T-1270
DL-6,8-Thioctic Acid Sigma T-1395
KH2PO4 Sigma P-5379
Choline di-acid citrate Sigma C-2004
myo-Inositol Sigma I-5125
D-Glucose Sigma G-7520
Lactalbumin enzymatic hydrolysate Sigma L-9010
Brain Heart Infusion BD 211065
Hemin chloride Frontier Scientific H651-9
HEPES, Na salt Sigma H-3784
Cholesterol J.T. Baker F676-05
MEM Non-Essential Amino Acids Invitrogen 11140-076
MEM Amino Acids Solution Invitrogen 11130-051
Nalidixic acid sodium salt Sigma N4382
Tetracycline Hydrochloride MP Biomedicals 2194542
Biolistic Delivery System BioRad 165-2257
Gold particles (Au Powder)   Ferro Electronic Material Systems 6420 2504, JZP01010KM
or
Gold Particles 1.0 μm BioRad  165-2263

Referências

  1. Kamath, R. S., et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 421, 231-237 (2003).
  2. Nass, R., Blakely, R. D. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annual review of pharmacology and toxicology. 43, 521-544 (2003).
  3. Lapierre, L. R., Hansen, M. Lessons from C elegans signaling pathways for longevity. Trends in endocrinology and metabolism TEM. 23, 637-644 (2012).
  4. Kenyon, C. The plasticity of aging insights from long-lived mutants. Cell. 120, 449-460 (2005).
  5. Vanfleteren, J. R., Braeckman, B. P. Mechanisms of life span determination in Caenorhabditis elegans. Neurobiology of aging. 20, 487-502 (1999).
  6. Poole, R. J., Bashllari, E., Cochella, L., Flowers, E. B., Hobert, O. A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans. PLoS genetics. 7, e1002109 (2011).
  7. Stiernagle, T. Maintenance of C elegans WormBook the online review of C. elegans biology. , 1-11 (2006).
  8. Win, M. T., et al. Validated Liquid Culture Monitoring System for Lifespan Extension of Caenorhabditis elegans through Genetic and Dietary Manipulations. Aging and disease. 4, 178-185 (2013).
  9. Clegg, E. D., LaPenotiere, H. F., French, D. Y., Szilagyi, M. Use of CeHR Axenic Medium for Exposure and Gene Expression Studies. East Coast Worm Meeting. , (2002).
  10. Severance, S., et al. Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS genetics. 6, e1001044 (2010).
  11. Rajagopal, A., et al. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature. 453, 1127-1131 (2008).
  12. Nass, R., Hamza, I. Chapter 1 Unit 1 9. The nematode C. elegans as an animal model to explore toxicology in vivo: solid and axenic growth culture conditions and compound exposure parameters. Current protocols in toxicology editorial board, Mahin D. Maines. , (2007).
  13. Schweinsberg, P. J., Grant, B. D. C. elegans gene transformation by microparticle bombardment WormBook the online review of C. elegans biology. , 1-10 (2013).
  14. Rao, A. U., Carta, L. K., Lesuisse, E., Hamza, I. Lack of heme synthesis in a free-living eukaryote. Proceedings of the National Academy of Sciences of the United States of America. 102, 4270-4275 (2005).
  15. Szewczyk, N. J., Kozak, E., Conley, C. A. Chemically defined medium and Caenorhabditis elegans. BMC biotechnology. 3, 19 (2003).
  16. Szewczyk, N. J., et al. Delayed development and lifespan extension as features of metabolic lifestyle alteration in C elegans under dietary restriction. The Journal of experimental biology. 209, 4129-4139 (2006).
  17. White, C., et al. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell metabolism. 17, 261-270 (2013).
  18. Chen, C., Samuel, T. K., Sinclair, J., Dailey, H. A., Hamza, I. An intercellular heme-trafficking protein delivers maternal heme to the embryo during development in C elegans. Cell. 145, 720-731 (2011).
  19. Praitis, V., Casey, E., Collar, D., Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genética. 157, 1217-1226 (2001).
  20. Berezikov, E., Bargmann, C. I., Plasterk, R. H. Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic acids research. 32, e40 (2004).
  21. Semple, J. I., Biondini, L., Lehner, B. Generating transgenic nematodes by bombardment and antibiotic selection. Nature Methods. 9, 118-119 (2012).
check_url/pt/51796?article_type=t

Play Video

Citar este artigo
Samuel, T. K., Sinclair, J. W., Pinter, K. L., Hamza, I. Culturing Caenorhabditis elegans in Axenic Liquid Media and Creation of Transgenic Worms by Microparticle Bombardment. J. Vis. Exp. (90), e51796, doi:10.3791/51796 (2014).

View Video