Summary

Påvisning av alternativ spleising Under epithelial-Mesenchymale Transition

Published: October 09, 2014
doi:

Summary

Alternative splicing regulation has been shown to contribute to the epithelial-mesenchymal transition (EMT), an essential cellular program in various physiological and pathological processes. Here we describe a method utilizing an inducible EMT model for the detection of alternative splicing during EMT.

Abstract

Alternative splicing plays a critical role in the epithelial-mesenchymal transition (EMT), an essential cellular program that occurs in various physiological and pathological processes. Here we describe a strategy to detect alternative splicing during EMT using an inducible EMT model by expressing the transcription repressor Twist. EMT is monitored by changes in cell morphology, loss of E-cadherin localization at cell-cell junctions, and the switched expression of EMT markers, such as loss of epithelial markers E-cadherin and γ-catenin and gain of mesenchymal markers N-cadherin and vimentin. Using isoform-specific primer sets, the alternative splicing of interested mRNAs are analyzed by quantitative RT-PCR. The production of corresponding protein isoforms is validated by immunoblotting assays. The method of detecting splice isoforms described here is also suitable for the study of alternative splicing in other biological processes.

Introduction

Epiteliale-mesenchymale overgang (EMT) er en utviklings program som driver organ morphogenesis og vev remodeling under embryogenesen. Når unormalt aktivert, fremmer EMT tumometastaser og orgel fibrose 1,2. Overbevisende studier har beskrevet viktigheten av transcriptional regulering under prosessen med EMT, definert av flere transkripsjonsfaktorer som Twist, sneglen, og ZEB, som undertrykker uttrykk for adherens krysset protein E-cadherin, som resulterer i tap av en cobble- stein som epithelial morfologi og gevinst på en spindel-formet mesenchymale fenotype 3-8. Nyere studier gjennom genom-bredt analyse av RNAer avslørte at det eksisterer en gruppe av gener hvis spleising mønstre er forbundet med enten epiteliale eller mesenkymale fenotyper 9,10. Arbeid fra vår lab funksjonelt koblet alternativ spleising og EMT. Ved å studere celleoverflaten adhesjonsmolekylet CD44, vi viste at CD44 alternAtive spleising er strengt regulert i EMT, og enda viktigere, at CD44 spleise isoform bytte årsaks bidrar til EMT 11.

Alternativ spleising representerer en utbredt og konservert modell av genregulering, som opp til 95% av menneskelige multi-ekson gener er alternativt skjøtes 12-14. Ved å generere multiple proteinprodukter fra en enkelt gen, utgjør alternativ spleising en viktig mekanisme for protein diversitet, og legger et lag av kompleksiteten til det humane genom. Som sådan, kan feilregulering av alternativ spleising potensielt føre til dyptgripende biologiske effekter forårsaker menneskelige sykdommer. Faktisk er dokumentert avvikende alternativ spleising i sykdommer i over et tiår 15-25, inkludert nylige funn at mutasjoner i gener som koder for spliceosome maskiner er ofte funnet i myelodysplastisk syndrom 26-28. Derfor er utvikling av pålitelige fremgangsmåter for påvisning av alternativt spleisede isoforms er av stor betydning i studiet av ulike biologiske prosesser, inkludert EMT.

Her gir vi en protokoll for å oppdage endringer i alternativ spleising ved hjelp av en induserbar EMT modell. Metodene for å designe PCR primere og oppdager skjøte isoformer er egnet ikke bare for studier av alternativ spleising under EMT, men også for studier av alternativ spleising i andre biologiske prosesser. Gransker alternativ spleising under EMT er avgjørende for å bedre forstå mekanismene for EMT og tumor metastasering, og dermed legge til rette for utvikling av effektive strategier for å behandle kreft metastasering.

Protocol

1. Cell Culture of EMT Induksjon Merk: EMT kan induseres ved behandling av TGFβ eller ektopisk uttrykk for transkripsjonsfaktorer Twist, sneglen, eller Zeb1 / 2 i epitelceller. Beskrevet i denne protokollen er en induserbar EMT system via uttrykk for Twist-ER fusjonsprotein i udødeliggjort menneskelige mammary epitelceller (HMLE / Twist-ER, en gave av Dr. J Yang, UCSD) 9,11,29. Ved 4-hydroxytamoxifen (TAM) behandling, translocates fusjonsproteinet Twist-ER til kjernen for å drive…

Representative Results

Fremgangsmåtene som er beskrevet ovenfor gir en robust metode for å detektere alternativ spleising under EMT. Representative resultater av CD44 splice isoform svitsjing under Twist-indusert EMT er gitt nedenfor som et eksempel. Twist-indusert EMT i HMLE / Twist-ER celler ble preget av en overgang fra en brostein som epitelial fenotype til en langstrakt fibroblastic fenotype (figur 2A), fravær av epiteliale markører E-cadherin, γ-catenin og occludin og oppregulering av m…

Discussion

Fremgangsmåten som beskrives her muliggjør påvisning av alternativ spleising i en induserbar EMT modell. Som sådan, dynamiske endringer Skjøt isoform uttrykk kan fanges hele tiden løpet av EMT. Denne metoden har fordeler fremfor bruk av ulike epithelial- eller mesenchymale-representerer cellelinjer for sammenligning av alternativ spleising fordi distinkte genetiske bakgrunn fra un-relaterte cellelinjer kan utilbørlig påvirke alternativ spleising. Imidlertid må den vellykkede induksjon av EMT nøye bekreftet ved…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge Wensheng Liu for invaluable help with cell imaging. This work was supported by grants from the US National Institutes of Health (R01 CA182467), American Cancer Society (RSG-09-252-01-RMC), Lynn Sage Foundation, and A Sister’s Hope Foundation.

Materials

Name of the reagent Company Catalogue number Comments (optional)
4-hydroxytamoxifen Sigma H7904 Make stock solution by dissolving in ethanol to 200μM, and keep at -20℃ protected from light. 
E.Z.N.A. Total RNA Isolation kit Omega Bio-Tek R6731 Total RNA isolation kit
GoScript Reverse Transcription System Promega A5001 Reagent for qRT-PCR assay
GoTaq qPCR Master Mix Promega A6002 Reagent for qRT-PCR assay
LightCycler 480 Real-Time PCR System Roche Equipment for qRT-PCR assay
CD44 antibody R&D Systems BBA10 1:1000 dilution
E-cadherin antibody Cell Signaling Technology 4065 1:2500 dilution for immunoblotting; 1:50 dilution for immunofluorescence
γ-catenin antibody Cell Signaling Technology 2309 1:1000 dilution
occludin antibody Santa Cruz Biotechnology Inc. sc-5562 1:500 dilution
fibronectin antibody BD Transduction Laboratories 610077 1:5000 dilution
N-cadherin antibody BD Transduction Laboratories 610920 1:2000 dilution
vimentin antibody NeoMarkers MS-129-p1 1:500 dilution
GAPDH antibody Millipore Corporation MAB374 1:10000 dilution
Amasham ECL Western blotting detection reagent GE Health Life Science RPN2209 Chemiluminescence system

Referências

  1. Thiery, J. P., Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 7, 131-142 (2006).
  2. Yang, J., Weinberg, R. A. Epithelial-mesenchymal transition at the crossroads of development and tumor metastasis. Dev Cell. 14, 818-829 (2008).
  3. Yang, J., et al. a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117, 927-939 (2004).
  4. Batlle, E., et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2, 84-89 (2000).
  5. Cano, A., et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2, 76-83 (2000).
  6. Comijn, J., et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 7, 1267-1278 (2001).
  7. Bolos, V., et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 116, 499-511 (2003).
  8. Eger, A., et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 24, 2375-2385 (2005).
  9. Shapiro, I. M., et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 7, e1002218 (2011).
  10. Warzecha, C. C., et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J. 29, 3286-3300 (2010).
  11. Brown, R. L., et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest. 121, 1064-1074 (2011).
  12. Wang, E. T., et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 456, 470-476 (2008).
  13. Pan, Q., Shai, O., Lee, L. J., Frey, B. J., Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 40, 1413-1415 (2008).
  14. Liu, S., Cheng, C. Alternative RNA splicing and cancer. Wiley Interdiscip Rev RNA. 4, 547-566 (2013).
  15. Shtivelman, E., Lifshitz, B., Gale, R. P., Roe, B. A., Canaani, E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell. 47, 277-284 (1986).
  16. Krangel, M. S. Secretion of HLA-A and -B antigens via an alternative RNA splicing pathway. J Exp Med. 163, 1173-1190 (1986).
  17. Brickell, P. M., Latchman, D. S., Murphy, D., Willison, K., Rigby, P. W. Activation of a Qa/Tla class I major histocompatibility antigen gene is a general feature of oncogenesis in the mouse. Nature. 306, 756-760 (1983).
  18. Barbaux, S., et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 17, 467-470 (1997).
  19. Charlet, B. N., et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell. 10, 45-53 (2002).
  20. Hutton, M., et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 393, 702-705 (1998).
  21. Kohsaka, T., et al. Exon 9 mutations in the WT1 gene, without influencing KTS splice isoforms, are also responsible for Frasier syndrome. Hum Mutat. 14, 466-470 (1999).
  22. Philips, A. V., Timchenko, L. T., Cooper, T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 280, 737-741 (1998).
  23. Savkur, R. S., Philips, A. V., Cooper, T. A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 29, 40-47 (2001).
  24. Spillantini, M. G., et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA. 95, 7737-7741 (1998).
  25. Wang, J., et al. Myotonic dystrophy evidence for a possible dominant-negative RNA mutation. Hum Mol Genet. 4, 599-606 (1995).
  26. Graubert, T. A., et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 44, 53-57 (2012).
  27. Papaemmanuil, E., et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 365, 1384-1395 (2011).
  28. Yoshida, K., et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 478, 64-69 (2011).
  29. Mani, S. A., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133, 704-715 (2008).
  30. Reinke, L. M., Xu, Y., Cheng, C. Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J Biol Chem. 287, 36435-36442 (2012).
  31. Serini, G., Gabbiani, G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 250, 273-283 (1999).
  32. Zavadil, J., Bottinger, E. P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 24, 5764-5774 (2005).
  33. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
  34. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).
  35. Boutz, P. L., et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636-1652 (2007).
  36. Salomonis, N., et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA. 107, 10514-10519 (2010).
  37. Calarco, J. A., et al. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell. 138, 898-910 (2009).
  38. Grabowski, P. Alternative splicing takes shape during neuronal development. Curr Opin Genet Dev. 21, 388-394 (2011).
  39. Seol, D. W., Billiar, T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem. 274, 2072-2076 (1999).
  40. Srinivasula, S. M., et al. Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res. 59, 999-1002 (1999).
  41. Akgul, C., Moulding, D. A., Edwards, S. W. Alternative splicing of Bcl-2-related genes functional consequences and potential therapeutic applications. Cell Mol Life Sci. 61, 2189-2199 (2004).
  42. Cooper, T. A. Use of minigene systems to dissect alternative splicing elements. Methods. 37, 331-340 (2005).
  43. Cheng, C., Sharp, P. A. Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol. 26, 362-370 (2006).
check_url/pt/51845?article_type=t

Play Video

Citar este artigo
Huang, H., Xu, Y., Cheng, C. Detection of Alternative Splicing During Epithelial-Mesenchymal Transition. J. Vis. Exp. (92), e51845, doi:10.3791/51845 (2014).

View Video