Summary

Nutzung von Microscale Siliziumcantilevern to Cellular Kontraktionsfähigkeit beurteilen<em> In-vitro-</em

Published: October 03, 2014
doi:

Summary

Dieses Protokoll beschreibt die Verwendung von Mikro Siliziumcantilevern biegsam Kulturoberflächen zur Messung der Kontraktionskraft der Muskelzellen in vitro. Zellkontraktion bewirkt Cantilever Biege, die gemessen werden können, aufgezeichnet und umgerechnet in die Messwerte von Kraft und bietet eine nicht-invasive und skalierbaren System zur Messung Kontraktionsfunktion in vitro.

Abstract

Die Entwicklung von mehr vorausschauende und biologisch relevanten in-vitro-Tests liegt auf der Weiterentwicklung der vielseitigen Zellkultursysteme, die die funktionelle Beurteilung der gesetzten Zellen zu erleichtern sagt. Zu diesem Zweck bietet Mikrotechnik Ausleger eine Plattform, mit der die Funktionalität der Kontraktions einer Reihe von Zelltypen, einschließlich Skelett, Herz und Zellen der glatten Muskulatur zu messen, durch die Bewertung der Kontraktion induziert Substrat Biegen. Anwendung der gemultiplexten Auslegerarrays stellt die Mittel zur Entwicklung moderaten bis hohen Durchsatz Protokolle zur Beurteilung der Wirksamkeit von Medikamenten und Toxizität, Krankheits-Phänotyp und Progression sowie neuromuskuläre und andere Zell-Zell-Interaktionen. Diese Handschrift enthält die Details zur Herstellung zuverlässiger Cantilever-Arrays für diesen Zweck, und die erforderlich sind, um erfolgreich Kulturzellen auf diesen Flächen Methoden. Weitere Beschreibung über die notwendigen funktionalen anal führen Sie die Schritte vorgesehenlyse von kontraktilen Zelltypen auf solche Arrays mit einem neuartigen Laser-und Foto-Detektor-System gepflegt. Die repräsentativen Daten zur Verfügung gestellt Highlights die Präzision und reproduzierbare Art der Analyse der Kontraktionsfunktion möglich mit diesem System, sowie die breite Palette von Studien, denen solche Technologie kann angewandt werden. Erfolgreiche weit verbreitete Annahme dieses Systems konnten die Ermittler stellen die Mittel, um eine schnelle, kostengünstige funktionelle Studien in vitro durchzuführen, was zu genaueren Vorhersagen von Gewebe Leistung, die Entwicklung der Krankheit und der Reaktion auf neue therapeutische Behandlung.

Introduction

The in vitro culture of muscle cells from both human and rodent sources has been possible for decades1,2. However, while standard coverslip preparations are useful for biochemical assessment, they do not facilitate analysis of the cell’s primary functional output (contractility), and therefore are of somewhat limited value as a means to assess cellular maturation and performance. In order to maximize the amount of data obtainable from such in vitro cultures, it is necessary to advance the development of systems capable of housing such cells in configurations that permit the real-time assessment of their functional performance. The establishment of a multitude of three dimensional muscle models has made some progress toward fulfilling this need, and such systems have been used in a number of publications as a means to assess the contractile capacity of cultured muscle cells in vitro3-5. While such systems are invaluable for tissue modeling and reconstruction studies, they are limited in their applicability for studies of single cell responses. In such cases where single fiber studies are necessary, complex and labor intensive ex vivo methodologies remain the only option6-10. Furthermore, current movement toward the development of complex, multi-organ platforms for drug development and screening protocols requires the establishment of systems which are non-invasive, easily scalable and which integrate readily with supporting cells and tissue models11.

Microscale cantilevers offer a simple method for assessing the functional contractile capacity of single cells/small populations of cells12,13. The technique is based on modified Atomic Force Microscopy (AFM) technology14, and uses a laser and photo-detector system to measure microscale cantilever deflection in response to cultured myotube contractile activity. Modified Stoney’s equations are then used to calculate stress in the myotube, and the force exerted by the myotube in order to generate the observed substrate deflection15. A scanning program has been written which enables simultaneous assessment of multiplexed cantilever arrays, offering potential moderate to high through-put applications for drug toxicity/efficacy studies15,16. Such technology may prove invaluable in the development of functional, pre-clinical assays for predicting drug efficacy in vivo. Furthermore, fabrication of cantilever chips in silicon does not impede post analysis processing of cells for standard biomolecular assays such as immunostaining, western blotting and PCR.

This manuscript provides detailed instructions on the fabrication and preparation of microscale silicon cantilevers, the hardware and software set-up, and the operating guidelines for assessing the functionality of contractile cells cultured on these chips. Standard cell culture techniques can be implemented for plating and maintenance of cells on these surfaces, hence any contractile cell type for which reliable culture parameters exist should be able to integrate with this device with ease. The relatively simple 2D culture parameters utilized in this system makes integration of other cell models or addition of cell types that can interact with muscle (such as innervating neurons) straight-forward, greatly increasing the applicability of this model in the development of more complex functional in vitro assays and multi-organ models of mammalian systems.

Protocol

1. Freischwinger Chipfertigungs Dargestellten Details der beschriebenen Herstellungsschritte sind in Figur 1 versehen. Platzieren Silicon-On-Insulator (SOI)-Wafer in einem Ofen gebacken und bei 125 ° C für 20 Minuten, um sie zu entwässern. Abscheidung einer 1,5 um dicken Schicht aus Siliziumoxid auf den Griff Schicht des entwässerten SOI Wafers unter Verwendung einer Plasma Enhanced Chemical Vapor Deposition (PECVD)-Tool. Platzieren des Waf…

Representative Results

Erfolgreiche Kultur von kontraktilen Zellen Ausleger ist ein relativ einfaches Verfahren, unter Verwendung von Standard-Zellkulturtechniken (Abbildung 5). Der Anteil der Ausleger unterstützt Vertrags Zellen variiert je nach Zelltyp untersucht und spezifische Kulturtechnik beschäftigt. Verwendung von primären embryonalen Zellen aus Rattenhinterglieder abgeleitet wurden kontraktile Aktivität auf 12% der untersuchten Ausleger erfaßt wird (n = 4). Analyse der Kontraktionsfähigkeit unter Verwendung der…

Discussion

Die kritischen Schritte bei der Analyse von Mikrobiegebalken zum Nachweis der zellulären Kontraktion sind die Anordnung der Auslegerchip innerhalb des Mikroskoptisch, und die nachfolgende Ausrichtung des Lasers und Photodetektors mit der Spitze der Ecke Auskragungen in der Anordnung. Wenn dies nicht genau durchgeführt, dann wird die Software nicht in der Lage, die Positionen der übrigen Cantilever in der Anordnung zu extrapolieren, bei der Datensammlung potentiell zu einer Akkumulation von falschen Negativen führen….

Declarações

The authors have nothing to disclose.

Acknowledgements

Diese Forschung wurde von National Institute of Health Zuschuss Zahlen R01NS050452 und R01EB009429 finanziert. Herstellung der Cantilever-Chips wurde von außen durch Mitarbeiter an der Nanofabrication Einrichtung an der Cornell University durchgeführt. Alle Geräte in der freitragenden Herstellungsprozess verwendet wurde in dieser Anlage entfernt. Besonderen Dank an Mandy Esch und Jean-Matthieu Prot für die Unterstützung bei freitragenden Mikrofabrikation. Video-Animation des Auslegers Funktionalität wurde von Charles Hughes, Alex und Eric Zelenin Imperiale aus dem synthetischen Reality Lab an der UCF erzeugt.

Materials

Name of material/ equipment Company Catalog number Comments/ Description
Primary rat muscle growth medium
Neurobasal medium Life Technologies 21103-049  N/A
B27 (50x) Life Technologies 17504044 1x
Glutamax (100x) Life Technologies 35050061 1x
G5 supplement Life Technologies 17503-012  1x
Glial-Derived Neurotrophic Factor Cell sciences CRG400B 20 ng/ ml
Brain-Derived Neurotrophic Factor Cell sciences CRB600B 20 ng/ ml
Ciliary Neurotrophic Factor Cell sciences CRC400A 40 ng/ ml
Neurotrophin-3 Cell sciences CRN500B 20 ng/ ml
Neurotrophin-4 Cell sciences CRN501B 20 ng/ ml
Acidic Fibroblast Growth Factor Life Technologies 13241-013  25 ng/ ml
Vascular Endothelial Growth Factor Life Technologies P2654 20 ng/ ml
Cardiotrophin-1 Cell sciences CRC700B 20 ng/ ml
Heparin Sulphate Sigma D9809  100 ng/ ml
Leukemia Inhibitory Factor Sigma L5158  20 ng/ ml
Vitronectin Sigma V0132 100 ng/ ml
Primary rat muscle differentiation medium
NB Activ 4 Brain Bits LLC NB4-500 N/A
Equipment
Class 2 red diode laser Newport N/A
Photo-detector Noah Industries N/A
Model 2100 Pulse stimulator A-M systems N/A
Multiclamp 700B Digitizer Axon Instruments N/A
Patch clamp microscope and stage Olympus N/A
Delta T4 culture dish controller Bioptechs N/A
Axoscope software Molecular Devices N/A
LabVIEW software National Instruments N/A
37oC, 5% CO2 incubator NAPCO N/A
Class 2 microbiological flow hood Labconco N/A
Pipettes and tips Eppendorf N/A

Referências

  1. Bischoff, R. Enzymatic liberation of myogenic cells from adult rat muscle. Anat. Rec. 180, 645-661 (1974).
  2. Yasin, R., et al. A quantitative technique for growing human adult skeletal muscle in culture starting from mononucleated cells. J. Neurol. Sci. 32, 347-360 (1977).
  3. Dennis, R. G., Kosnik, P. E., 2nd, Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev. Biol. Anim. 36, 327-335 (2000).
  4. Khodabukus, A., Baar, K. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods. 18, 349-357 (2012).
  5. Langelaan, M. L. P., et al. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells. Journal of tissue engineering and regenerative medicine. 5, 529-539 (2011).
  6. Stephenson, G. M., O’Callaghan, A., Stephenson, D. G. Single-fiber study of contractile and biochemical properties of skeletal muscles in streptozotocin-induced diabetic rats. Diabetes. 43, 622-628 (1994).
  7. Harber, M., Trappe, S. Single muscle fiber contractile properties of young competitive distance runners. Journal of applied physiology (Bethesda, Md: 1985). 105, 629-636 (2008).
  8. Hvid, L. G., et al. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men. Experimental gerontology. 48, 154-161 (2013).
  9. Edman, K. A. Contractile performance of striated muscle. Advances in experimental medicine and biology. 682, 7-40 (2010).
  10. Krivickas, L. S., Walsh, R., Amato, A. A. Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve. 39, 3-9 (2009).
  11. Sung, J. H., et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a chip. 13, 1201-1212 (2013).
  12. Wilson, K., Molnar, P., Hickman, J. J. Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation. Lab on a chip. 7, 920-922 (2007).
  13. Wilson, K., Das, M., Wahl, K. J., Colton, R. J., Hickman, J. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS ONE. 5, (2010).
  14. Binnig, G., Quate, C. F., Gerber, C. Atomic Force Microscope. Physical Review Letters. 56, 930-933 (1986).
  15. Pirozzi, K. L., Long, C. J., McAleer, C. W., Smith, A. S., Hickman, J. J. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device. Applied physics letters. 103, 83108 (2013).
  16. Smith, A., Long, C., Pirozzi, K., Hickman, J. A functional system for high-content screening of neuromuscular junctions in vitro. Technology. 1, 37-48 (2013).
  17. Stenger, D. A., et al. Coplanar molecular assemblies of amino- and perfluorinated alkylsilanes: characterization and geometric definition of mammalian cell adhesion and growth. Journal of the American Chemical Society. 114, 8435-8442 (1992).
  18. Das, M., Rumsey, J. W., Bhargava, N., Stancescu, M., Hickman, J. J. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials. 31, 4880-4888 (2010).
  19. Rumsey, J. W., Das, M., Bhalkikar, A., Stancescu, M., Hickman, J. J. Tissue engineering the mechanosensory circuit of the stretch reflex arc: Sensory neuron innervation of intrafusal muscle fibers. Biomaterials. 31, 8218-8227 (2010).
  20. Das, M., Rumsey, J. W., Bhargava, N., Stancescu, M., Hickman, J. J. Skeletal muscle tissue engineering: A maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials. 30, 5392-5402 (2009).
  21. Das, M., et al. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell Dev Biol Anim. 45, 378-387 (2009).
  22. Stenger, D. A., Pike, C. J., Hickman, J. J., Cotman, C. W. Surface determinants of neuronal survival and growth on self-assembled monolayers in culture. Brain research. 630, 136-147 (1993).
  23. Hickman, J. J., et al. Rational pattern design for in vitro cellular networks using surface photochemistry. Journal of Vacuum Scienc., & Technology A: Vacuum, Surfaces, and Films. 12, 607-616 (1994).
  24. Das, M., Molnar, P., Devaraj, H., Poeta, M., Hickman, J. J. Electrophysiological and morphological characterization of rat embryonic motor neurons in a defined system. Biotechnology progress. 19, 1756-1761 (2003).
  25. Rumsey, J. W., et al. Node of Ranvier formation on motor neurons in vitro. Biomaterials. 30, 3567-3572 (2009).
  26. Murugan, R., Molnar, P., Rao, K. P., Hickman, J. J. Biomaterial Surface patterning of self assembled monolayers for controlling neuronal cell behavior. International journal of biomedical engineering and technology. 2, 104-134 (2009).
  27. Guo, X., Johe, K., Molnar, P., Davis, H., Hickman, J. Characterization of a human fetal spinal cord stem cell line, NSI-566RSC, and its induction to functional motoneurons. Journal of Tissue Engineering and Regenerative Medicine. 4, 181-193 (2010).
  28. Varghese, K., et al. A new target for amyloid beta toxicity validated by standard and high-throughput electrophysiology. PLoS ONE. 5, e8643 (2010).
  29. Natarajan, A., et al. Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials. 32, 4267-4274 (2011).
  30. Davis, H., et al. Rat Cortical Oligodendrocyte-Embryonic Motoneuron Co-Culture: An Axon-Oligodendrocyte Interaction Model. Journal of biomaterials and tissue. 2, 206-214 (2012).
  31. Natarajan, A., DeMarse, T., Molnar, P., Hickman, J. Engineered In Vitro Feed-Forward Networks. J Biotechnol Biomater. 3, 2 (2013).

Play Video

Citar este artigo
Smith, A. S., Long, C. J., McAleer, C., Bobbitt, N., Srinivasan, B., Hickman, J. J. Utilization of Microscale Silicon Cantilevers to Assess Cellular Contractile Function In Vitro. J. Vis. Exp. (92), e51866, doi:10.3791/51866 (2014).

View Video