Summary

L'utilizzo di microscala Silicon cantilever per valutare Cellular contrattile Funzione<em> In Vitro</em

Published: October 03, 2014
doi:

Summary

Questo protocollo descrive l'uso di cantilever silicio microscala come superfici di coltura flessibili per misurare la contrattilità delle cellule muscolari in vitro. Contrazione cellulare provoca cantilever flessione, che può essere misurata, registrata e convertita in letture di forza, fornendo un sistema non invasivo e scalabile per misurare funzione contrattile in vitro.

Abstract

Lo sviluppo di test più predittivi e biologicamente rilevanti in vitro si basa sulla promozione dei sistemi di coltura di cellule versatili che facilitano la valutazione funzionale delle cellule teste di serie. A tal fine, la tecnologia cantilever microscala offre una piattaforma con cui misurare la funzionalità contrattile di una gamma di tipi cellulari, incluse scheletrico, cardiaco e cellule muscolari lisce, attraverso la valutazione della contrazione indotta substrato piegatura. Applicazione di matrici a sbalzo multiplex fornisce i mezzi per sviluppare moderata a protocolli di high-throughput per valutare l'efficacia dei farmaci e la tossicità, fenotipo della malattia e la progressione, così come le interazioni neuromuscolari e altri cellula-cellula. Questo manoscritto fornisce i dettagli per la fabbricazione di matrici a sbalzo affidabili per questo scopo, ed i metodi necessari al successo le cellule di coltura su queste superfici. Ulteriore descrizione è fornita sui passi necessari per eseguire anale funzionaleYsis di tipi di cellule contrattili mantenuta su tali array utilizzando un nuovo sistema laser e foto-rilevatore. I dati rappresentativi forniti evidenzia la precisione e la natura riproducibile dell'analisi della funzione contrattile possibile utilizzare questo sistema, così come la vasta gamma di studi cui tale tecnologia può essere applicata. Adozione diffusa di successo di questo sistema potrebbe fornire gli investigatori i mezzi per eseguire rapidi, studi funzionali a basso costo in vitro, portando a previsioni più accurate delle prestazioni dei tessuti, lo sviluppo della malattia e la risposta al trattamento terapeutico.

Introduction

The in vitro culture of muscle cells from both human and rodent sources has been possible for decades1,2. However, while standard coverslip preparations are useful for biochemical assessment, they do not facilitate analysis of the cell’s primary functional output (contractility), and therefore are of somewhat limited value as a means to assess cellular maturation and performance. In order to maximize the amount of data obtainable from such in vitro cultures, it is necessary to advance the development of systems capable of housing such cells in configurations that permit the real-time assessment of their functional performance. The establishment of a multitude of three dimensional muscle models has made some progress toward fulfilling this need, and such systems have been used in a number of publications as a means to assess the contractile capacity of cultured muscle cells in vitro3-5. While such systems are invaluable for tissue modeling and reconstruction studies, they are limited in their applicability for studies of single cell responses. In such cases where single fiber studies are necessary, complex and labor intensive ex vivo methodologies remain the only option6-10. Furthermore, current movement toward the development of complex, multi-organ platforms for drug development and screening protocols requires the establishment of systems which are non-invasive, easily scalable and which integrate readily with supporting cells and tissue models11.

Microscale cantilevers offer a simple method for assessing the functional contractile capacity of single cells/small populations of cells12,13. The technique is based on modified Atomic Force Microscopy (AFM) technology14, and uses a laser and photo-detector system to measure microscale cantilever deflection in response to cultured myotube contractile activity. Modified Stoney’s equations are then used to calculate stress in the myotube, and the force exerted by the myotube in order to generate the observed substrate deflection15. A scanning program has been written which enables simultaneous assessment of multiplexed cantilever arrays, offering potential moderate to high through-put applications for drug toxicity/efficacy studies15,16. Such technology may prove invaluable in the development of functional, pre-clinical assays for predicting drug efficacy in vivo. Furthermore, fabrication of cantilever chips in silicon does not impede post analysis processing of cells for standard biomolecular assays such as immunostaining, western blotting and PCR.

This manuscript provides detailed instructions on the fabrication and preparation of microscale silicon cantilevers, the hardware and software set-up, and the operating guidelines for assessing the functionality of contractile cells cultured on these chips. Standard cell culture techniques can be implemented for plating and maintenance of cells on these surfaces, hence any contractile cell type for which reliable culture parameters exist should be able to integrate with this device with ease. The relatively simple 2D culture parameters utilized in this system makes integration of other cell models or addition of cell types that can interact with muscle (such as innervating neurons) straight-forward, greatly increasing the applicability of this model in the development of more complex functional in vitro assays and multi-organ models of mammalian systems.

Protocol

1 Cantilever Chip Fabrication Dettagli illustrati delle fasi di fabbricazione descritti sono forniti in Figura 1. Posizionare wafer di silicio su isolante (SOI) in un forno e cuocere a 125 ° C per 20 min a disidratarsi loro. Depositare uno spesso strato di ossido di silicio 1,5 micron sullo strato maniglia del wafer SOI disidratato usando un potenziato a plasma Chemical Vapor Deposition (PECVD) dell'utensile. Posizionare la cialda sul mand…

Representative Results

Cultura di successo di cellule contrattili su cantilever è una procedura relativamente semplice, utilizzando tecniche standard di coltura cellulare (Figura 5). La percentuale di cellule di supporto cantilever amministrazioni varierà a seconda del tipo di cellula in esame e specifica cultura tecnica impiegata. Utilizzo di cellule embrionali primarie derivate da ratto arti posteriori, l'attività contrattile è stata rilevata il 12% di cantilever esaminati (n = 4). Analisi della funzione contrattile…

Discussion

Le fasi critiche analizzando cantilever microscala per prove di contrazione cellulare sono il posizionamento del chip a sbalzo all'interno della fase di microscopio, e il successivo allineamento del laser e foto-rivelatore con la punta del cantilever angolari nella matrice. Se questo non viene fatto accuratamente, quindi il software sarà in grado di estrapolare le posizioni dei rimanenti cantilever nella matrice, potenzialmente conseguente accumulo di falsi negativi durante la raccolta dei dati. Gli operatori devon…

Declarações

The authors have nothing to disclose.

Acknowledgements

Questa ricerca è stata finanziata dal National Institute of numeri di sovvenzione Salute R01NS050452 e R01EB009429. Fabbricazione dei chip a sbalzo è stata eseguita esternamente da collaboratori presso l'impianto di nanofabbricazione situato presso la Cornell University. Tutte le apparecchiature utilizzate nel processo di fabbricazione a sbalzo era situato in questa struttura. Un ringraziamento speciale a Mandy Esch e Jean-Matthieu Prot per la loro assistenza con cantilever micro-fabbricazione. Animazione Video di funzionalità cantilever è stato generato da Charles Hughes, Alex Zelenin ed Eric Imperiale dal Laboratorio di Realtà sintetica a UCF.

Materials

Name of material/ equipment Company Catalog number Comments/ Description
Primary rat muscle growth medium
Neurobasal medium Life Technologies 21103-049  N/A
B27 (50x) Life Technologies 17504044 1x
Glutamax (100x) Life Technologies 35050061 1x
G5 supplement Life Technologies 17503-012  1x
Glial-Derived Neurotrophic Factor Cell sciences CRG400B 20 ng/ ml
Brain-Derived Neurotrophic Factor Cell sciences CRB600B 20 ng/ ml
Ciliary Neurotrophic Factor Cell sciences CRC400A 40 ng/ ml
Neurotrophin-3 Cell sciences CRN500B 20 ng/ ml
Neurotrophin-4 Cell sciences CRN501B 20 ng/ ml
Acidic Fibroblast Growth Factor Life Technologies 13241-013  25 ng/ ml
Vascular Endothelial Growth Factor Life Technologies P2654 20 ng/ ml
Cardiotrophin-1 Cell sciences CRC700B 20 ng/ ml
Heparin Sulphate Sigma D9809  100 ng/ ml
Leukemia Inhibitory Factor Sigma L5158  20 ng/ ml
Vitronectin Sigma V0132 100 ng/ ml
Primary rat muscle differentiation medium
NB Activ 4 Brain Bits LLC NB4-500 N/A
Equipment
Class 2 red diode laser Newport N/A
Photo-detector Noah Industries N/A
Model 2100 Pulse stimulator A-M systems N/A
Multiclamp 700B Digitizer Axon Instruments N/A
Patch clamp microscope and stage Olympus N/A
Delta T4 culture dish controller Bioptechs N/A
Axoscope software Molecular Devices N/A
LabVIEW software National Instruments N/A
37oC, 5% CO2 incubator NAPCO N/A
Class 2 microbiological flow hood Labconco N/A
Pipettes and tips Eppendorf N/A

Referências

  1. Bischoff, R. Enzymatic liberation of myogenic cells from adult rat muscle. Anat. Rec. 180, 645-661 (1974).
  2. Yasin, R., et al. A quantitative technique for growing human adult skeletal muscle in culture starting from mononucleated cells. J. Neurol. Sci. 32, 347-360 (1977).
  3. Dennis, R. G., Kosnik, P. E., 2nd, Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev. Biol. Anim. 36, 327-335 (2000).
  4. Khodabukus, A., Baar, K. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods. 18, 349-357 (2012).
  5. Langelaan, M. L. P., et al. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells. Journal of tissue engineering and regenerative medicine. 5, 529-539 (2011).
  6. Stephenson, G. M., O’Callaghan, A., Stephenson, D. G. Single-fiber study of contractile and biochemical properties of skeletal muscles in streptozotocin-induced diabetic rats. Diabetes. 43, 622-628 (1994).
  7. Harber, M., Trappe, S. Single muscle fiber contractile properties of young competitive distance runners. Journal of applied physiology (Bethesda, Md: 1985). 105, 629-636 (2008).
  8. Hvid, L. G., et al. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men. Experimental gerontology. 48, 154-161 (2013).
  9. Edman, K. A. Contractile performance of striated muscle. Advances in experimental medicine and biology. 682, 7-40 (2010).
  10. Krivickas, L. S., Walsh, R., Amato, A. A. Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve. 39, 3-9 (2009).
  11. Sung, J. H., et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a chip. 13, 1201-1212 (2013).
  12. Wilson, K., Molnar, P., Hickman, J. J. Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation. Lab on a chip. 7, 920-922 (2007).
  13. Wilson, K., Das, M., Wahl, K. J., Colton, R. J., Hickman, J. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS ONE. 5, (2010).
  14. Binnig, G., Quate, C. F., Gerber, C. Atomic Force Microscope. Physical Review Letters. 56, 930-933 (1986).
  15. Pirozzi, K. L., Long, C. J., McAleer, C. W., Smith, A. S., Hickman, J. J. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device. Applied physics letters. 103, 83108 (2013).
  16. Smith, A., Long, C., Pirozzi, K., Hickman, J. A functional system for high-content screening of neuromuscular junctions in vitro. Technology. 1, 37-48 (2013).
  17. Stenger, D. A., et al. Coplanar molecular assemblies of amino- and perfluorinated alkylsilanes: characterization and geometric definition of mammalian cell adhesion and growth. Journal of the American Chemical Society. 114, 8435-8442 (1992).
  18. Das, M., Rumsey, J. W., Bhargava, N., Stancescu, M., Hickman, J. J. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials. 31, 4880-4888 (2010).
  19. Rumsey, J. W., Das, M., Bhalkikar, A., Stancescu, M., Hickman, J. J. Tissue engineering the mechanosensory circuit of the stretch reflex arc: Sensory neuron innervation of intrafusal muscle fibers. Biomaterials. 31, 8218-8227 (2010).
  20. Das, M., Rumsey, J. W., Bhargava, N., Stancescu, M., Hickman, J. J. Skeletal muscle tissue engineering: A maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials. 30, 5392-5402 (2009).
  21. Das, M., et al. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell Dev Biol Anim. 45, 378-387 (2009).
  22. Stenger, D. A., Pike, C. J., Hickman, J. J., Cotman, C. W. Surface determinants of neuronal survival and growth on self-assembled monolayers in culture. Brain research. 630, 136-147 (1993).
  23. Hickman, J. J., et al. Rational pattern design for in vitro cellular networks using surface photochemistry. Journal of Vacuum Scienc., & Technology A: Vacuum, Surfaces, and Films. 12, 607-616 (1994).
  24. Das, M., Molnar, P., Devaraj, H., Poeta, M., Hickman, J. J. Electrophysiological and morphological characterization of rat embryonic motor neurons in a defined system. Biotechnology progress. 19, 1756-1761 (2003).
  25. Rumsey, J. W., et al. Node of Ranvier formation on motor neurons in vitro. Biomaterials. 30, 3567-3572 (2009).
  26. Murugan, R., Molnar, P., Rao, K. P., Hickman, J. J. Biomaterial Surface patterning of self assembled monolayers for controlling neuronal cell behavior. International journal of biomedical engineering and technology. 2, 104-134 (2009).
  27. Guo, X., Johe, K., Molnar, P., Davis, H., Hickman, J. Characterization of a human fetal spinal cord stem cell line, NSI-566RSC, and its induction to functional motoneurons. Journal of Tissue Engineering and Regenerative Medicine. 4, 181-193 (2010).
  28. Varghese, K., et al. A new target for amyloid beta toxicity validated by standard and high-throughput electrophysiology. PLoS ONE. 5, e8643 (2010).
  29. Natarajan, A., et al. Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials. 32, 4267-4274 (2011).
  30. Davis, H., et al. Rat Cortical Oligodendrocyte-Embryonic Motoneuron Co-Culture: An Axon-Oligodendrocyte Interaction Model. Journal of biomaterials and tissue. 2, 206-214 (2012).
  31. Natarajan, A., DeMarse, T., Molnar, P., Hickman, J. Engineered In Vitro Feed-Forward Networks. J Biotechnol Biomater. 3, 2 (2013).
check_url/pt/51866?article_type=t

Play Video

Citar este artigo
Smith, A. S., Long, C. J., McAleer, C., Bobbitt, N., Srinivasan, B., Hickman, J. J. Utilization of Microscale Silicon Cantilevers to Assess Cellular Contractile Function In Vitro. J. Vis. Exp. (92), e51866, doi:10.3791/51866 (2014).

View Video