Summary

Berikelse for kjemoresistent eggstokkreft stamceller fra humane cellelinjer

Published: September 10, 2014
doi:

Summary

Kreft stamceller (cscs) er involvert i tumor tilbakefall på grunn chemoresistance. Vi har optimalisert en protokoll for utvalg og utvidelse av cscs fra eggstokkreft cellelinjer. Ved behandling av cellene med det kjemoterapeutiske cisplatin og dyrkning i en stamcelle fremme medier vi berike for ikke-adherente CSC kulturer.

Abstract

Cancer stamceller (cscs) er definert som en undergruppe av langsom sykling og udifferensierte celler som deler seg asymmetrisk å generere svært proliferativ, invasiv og kjemoresistent tumorceller. Derfor cscs er en attraktiv populasjon av celler å målrette terapeutisk. Cscs er spådd å bidra til en rekke typer av maligniteter, inkludert de i blod, hjerne, lunge, mage-tarmkanalen, prostata og ovarier. Isolere og berikende en svulst celle befolkning for cscs vil gjøre forskere til å studere egenskaper, genetikk og terapeutisk respons av cscs. Vi ga en protokoll som reproduserbart beriker for eggstokkreft cscs fra eggstokkreft cellelinjer (SKOV3 og OVCA429). Cellelinjer blir behandlet med 20 mM cisplatin i 3 dager. Overlevende celler er isolert og dyrket i et serumfritt medium inneholdende stamcelle cytokiner og vekstfaktorer. Vi demonstrerer en berikelse av disse rensede cscs ved å analysere de isolerte celler for known stamcellemarkører Oct4, Nanog, og Prom1 (CD133) og celleoverflaten uttrykk for CD177 og CD133. Den cscs utstillings økt chemoresistance. Denne metoden for isolering av cscs er et nyttig verktøy for å studere rollen cscs i chemoresistance og tumor tilbakefall.

Introduction

Resistance to chemotherapy is a major impediment to the treatment and cure of cancer. Ovarian cancer is the 5th leading cause of cancer-related deaths among women in the United States (American Cancer Society Facts and Figures 2013). Patients initially respond well to chemotherapy, but most patients relapse1. After relapse patients are treated with a variety of additional chemotherapy agents with very little benefit2. General properties of CSCs include unlimited proliferative capabilities, retention of an undifferentiated state, resistance to drug treatment, efficient DNA repair, and ability to generate malignant tumor cells with different phenotypes3. CSCs frequently exhibit expression of stem cell genes such as Nanog, Oct4, Sox2, Nestin, CD133, and CD117. CSCs often express elevated levels of ABCG2, and ALDH genes that may contribute to drug efflux and metabolism3,4.

The first definitive evidence for CSCs was demonstrated by isolating acute myeloid leukemia-initiating cells that were capable of self-renewal and tumor generation5. These leukemic stem cells expressed surface CD34 and generated leukemia in NOD/SCID (immunocompromised) mice5. Since then CSCs have been identified in many cancer types including leukemias/lymphomas, breast, bladder, colorectal, endometrial, sarcomas, hepatocellular carcinoma, melanomas, gliomas, ovarian, pancreatic, prostate, squamous cell carcinoma, and lung6. Therefore, being able to study this subtype of cancer cell is advantageous.

The goal of this study is to create a protocol for the selection and isolation of chemoresistant CSCs. Several methods have been reported for the isolation of CSCs from ovarian cancer cell lines. Non-adherent spheroids isolated from OVCAR-3, SKOV3, or HO8910 cultures demonstrate stem-like properties7,8. Isolation of CD133+ cells from OVCAR-3 cultures also yields CSCs. CSCs have also been selected in culture by treatment with chemotherapeutic agents. Treating tumor cell lines (OVCA433, Hey, and SKOV3 cells) with cisplatin and paclitaxel allows for the expansion and isolation of CSCs4,9. While culture of some cell types in CSC media leads to isolation of CSCs, SKOV3 cells did not survive culture in serum-free media or form sphere cells4. Therefore, treatment of cells with cisplatin and paclitaxel aided the expansion or isolation of this population4.

Using a modification of the procedure presented by Ma and colleagues4 we developed a method to isolate CSCs from the ovarian cancer cell lines. Our protocol is advantageous as it yields more viable cells while using less toxic chemotherapeutic agents. Cells are treated with cisplatin and subsequently grown in serum-free media supplemented with growth factors (stem cell media). We isolate the resulting non-adherent sphere cells and assay them for their expression of stem cell markers. This model enables the study of CSC properties and response to drug therapy.

Protocol

1. Cellekultur og Fluorescent Merking av eggstokkreft cellelinjer Forbered SKOV3 middel: McCoy medier supplert med 10% føtalt bovint serum (FBS), 0,1 mM L-glutamin, 50 U / ml penicillin og 50 ug / ml streptomycin. Oppretthold OVCA429 celler i minimalt essensielt medium (MEM) supplert med 10% FBS, 1 mM natrium-pyruvat, 0,1 mM L-glutamin, 50 U / ml penicillin og 50 ug / ml streptomycin. Forplante SKOV3 og OVCA429 cellelinjer i en fuktet inkubator ved 37 ° C med 5% CO2. Grow celler til 40-…

Representative Results

For å demonstrere at vi isolert cscs fra ovarialcancer cellelinjer ved hjelp av cisplatin behandling, må vi først kjøpte bilder av cellelinjene før behandling og etter valget. Vi brukte lysmikroskopi til å ta bilder av tilhenger (ubehandlet) SKOV3 og OVCA429 celler og SKOV3 og OVCA429 cscs (figur 1). Cscs vises runde og ikke festet til vevskulturplater (figur 1 og 2). Vi viser videre at SKOV3-celler transdusert med RFP beholde sin fluorescens etter isolering av de…

Discussion

Cscs som er resistente mot behandling kan være ansvarlig for tilbakefall etter behandling av primærtumor. Karakterisering av cscs kan føre til bedre behandling for eggstokkreft. De kritiske parametre i etableringen av kjemoresistent cscs ved hjelp av ovennevnte protokoll er timingen lengden av behandling med kjemoterapi og konsentrasjonen av kjemoterapi. Ved bruk av protokollen i Ma et al. det ble funnet at etter 7 dagers behandling med cisplatin og paclitaxel, ingen levedyktige celler forble 4. V…

Declarações

The authors have nothing to disclose.

Acknowledgements

Serene Samyesudhas and Dr. Lynn Roy assisted in preparing samples for filming.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
McCoy Life Technologies 16600-108 Warm to 37C prior to use
DMEM / F12 serum free Life Technologies  11320-033 Warm to 37C prior to use
Minimal Essential Media Life Technologies  42360032 Warm to 37C prior to use
Sodium Pyruvate Life Technologies  11360070
Polybrene Millipore TR-1003-G
Blasticidin Life Technologies  R21001
Fetal Bovine Serum  Atlas Biologicals F-0500-A
Penicillin-streptomycin  Life Technologies 15070-063
Cisplatin Sigma-Aldrich T7402-5MG Caution: Toxic Use precautions
pLenti-suCMV-Rsv Gentarget LVP023 BSL2 approval needed
Insulin Sigma-Aldrich I-1882
Human Recombinant EGF  Cell Signaling Technology 8916LC
bFGF BD biosciences 354060
LIF Santa Cruz sc-4988A
Bovine Serum Albumin Roche 03 116 956 001
TRIzol Life Technologies 15596-018
High Capacity cDNA Reverse Transcription Kit   Applied Biosystems 4368813
IQ Multiplex Powermix BioRad 1725849
Accumax Millipore
Primers Integrated DNA Technology individually designed and ordered (see protocol for sequnces)
Anti-CD133 PE Milenyl 130-098-826 Primer/probe sets are light sensitive
CD117-Biotin Miltenly 130-098-570
AntiBiotin-FITC Miltenly 130-098-796
Paraformaldehyde Sigma-Aldrich P6148-1KG Caution: Toxic always prepare in hood and make fresh.
Trypsin Life Technologies 25300062
MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide)  Sigma-Aldrich 25200-072
EVOS Fl Epifluorescence and Transmitted Light Microscope Advanced Microscopy Group
Biorad CFX96 C1000 System Biorad
Beckman Coulter FC500 Flow Cytometer  Beckman Coulter
Spectramax 340PC384  Molecular Devices

Referências

  1. Pennington, K., Pulaski, H., Pennington, M., Liu, J. R. Too Much of a Good Thing: Suicide Prevention Promotes Chemoresistance in Ovarian Carcinoma. Curr Cancer Drug Targets. 10, 575-583 (2010).
  2. Thigpen, T. A rational approach to the management of recurrent or persistent ovarian carcinoma. Clin Obstet Gynecol. 55, 114-130 (2012).
  3. Burgos-Ojeda, D., Rueda, B. R., Buckanovich, R. J. Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer letters. 322, 1-7 (2012).
  4. Ma, L., Lai, D., Liu, T., Cheng, W., Guo, L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin (Shanghai). 42, 593-602 (2010).
  5. Bonnet, D., Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine. 3, 730-737 (1997).
  6. Alison, M. R., Lim, S. M., Nicholson, L. J. Cancer stem cells: problems for therapy. The Journal of pathology. 223, 147-161 (2011).
  7. Luo, X., Dong, Z., Chen, Y., Yang, L., Lai, D. Enrichment of ovarian cancer stem-like cells is associated with epithelial to mesenchymal transition through an miRNA-activated AKT pathway. Cell proliferation. 46, 436-446 (2013).
  8. Wang, L., Mezencev, R., Bowen, N. J., Matyunina, L. V., McDonald, J. F. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and cellular biochemistry. 363, 257-268 (2012).
  9. Abubaker, K., et al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular cancer. 12, 24 (2013).
  10. Conic, I., Dimov, I., Tasic-Dimov, D., Djordjevic, B., Stefanovic, V. Ovarian epithelial cancer stem cells. ScientificWorldJournal. 11, 1243-1269 (2011).
  11. Liu, K. C., et al. Ovarian cancer stem-like cells show induced translineage-differentiation capacity and are suppressed by alkaline phosphatase inhibitor. Oncotarget. 4 (12), 2366-2382 (2013).
  12. Liu, T., Cheng, W., Lai, D., Huang, Y., Guo, L. Characterization of primary ovarian cancer cells in different culture systems. Oncology reports. 23, 1277-1284 (2010).
check_url/pt/51891?article_type=t

Play Video

Citar este artigo
Cole, J. M., Joseph, S., Sudhahar, C. G., Cowden Dahl, K. D. Enrichment for Chemoresistant Ovarian Cancer Stem Cells from Human Cell Lines. J. Vis. Exp. (91), e51891, doi:10.3791/51891 (2014).

View Video