Summary

高含量的成像检测方法的肉毒毒素抑制剂的鉴定

Published: November 14, 2014
doi:

Summary

Botulinum neurotoxin is one of the most potent toxins among Category-A biothreat agents, yet a post-exposure therapeutic is not available. The high content imaging approach is a powerful methodology for identifying novel inhibitors as it enables multiparameter screening using biologically relevant motor neurons, the primary target of this toxin.

Abstract

Synaptosomal-associated protein-25 (SNAP-25) is a component of the soluble NSF attachment protein receptor (SNARE) complex that is essential for synaptic neurotransmitter release. Botulinum neurotoxin serotype A (BoNT/A) is a zinc metalloprotease that blocks exocytosis of neurotransmitter by cleaving the SNAP-25 component of the SNARE complex. Currently there are no licensed medicines to treat BoNT/A poisoning after internalization of the toxin by motor neurons. The development of effective therapeutic measures to counter BoNT/A intoxication has been limited, due in part to the lack of robust high-throughput assays for screening small molecule libraries. Here we describe a high content imaging (HCI) assay with utility for identification of BoNT/A inhibitors. Initial optimization efforts focused on improving the reproducibility of inter-plate results across multiple, independent experiments. Automation of immunostaining, image acquisition, and image analysis were found to increase assay consistency and minimize variability while enabling the multiparameter evaluation of experimental compounds in a murine motor neuron system.

Introduction

细菌肉毒梭菌产生的肉毒杆菌神经毒素,对人类已知1是最有效的生物毒素之一。有7个不同的血清型肉毒毒素(肉毒毒素/ AG)。肉毒毒素/ A-胆引起麻痹的神经肌肉接头处由于SNARE复合体蛋白水解2,3。 SNARE蛋白水解阻止神经递质囊泡膜融合,从而阻止神经递质胞吐4。具体的SNARE目标取决于所涉及的中毒过程中的特殊肉毒毒素血清型。肉毒毒素/ A和肉毒毒素/ E切割SNAP-25,而肉毒毒素/ C切割两种SNAP-25和突触5。剩下的血清型切割突触(也称为囊泡相关膜蛋白(VAMP)。肉毒毒素/ A被选为试验发展,因为它是负责自然发生的肉毒杆菌中毒的比例很高,并具有行动6。发展小分子的最长期限治疗对肉毒毒素/ A是主要目标我们的药物研发项目,并利用传统的基于目标的方法来确定活性位点的蛋白水解酶抑制剂7,8-10。然而,创建活性位点抑制剂具有抗多种血清型和后曝光功效广谱活性的将可能是具有挑战性的。

因此,我们已经实现了一个创新的,表型的药物发现,使用肉毒毒素SNAP-25的切割作为一个功能的端点,以确定小分子,可以阻止肉毒毒素介导的运动神经中毒的方法。 SNAP-25所需的神经递质的释放,如SNAP-25的降解是预测性麻痹和致死的体内 。例如,基于细胞的筛选可能导致发现的负责毒素失活或抑制毒素途径的靶细胞内的细胞因子的新调节剂。在表型检测发展的一个重要因素是生理上相关的生物模型的选择。 W¯¯e和其他人描述了小鼠胚胎干(ES)细胞衍生的运动神经元概括初级运动神经元的免疫学性质,包括SNAP-25 -11- 13的表达。重要的是,这些蜂窝系统到的BoNT / A中毒高度敏感和演示的SNAP-25的剂量依赖性裂解响应于增加毒素11,12的浓度。在分化的运动神经元也产生在量,足以适用于高通量板为基础的分析,并允许细胞试验的阵列的设计。

表型分析是利用两种不同的抗体,肉毒毒素/鼠标运动神经元文化的陶醉在量化内源性表达的全长SNAP-25的裂解免疫荧光法。羧基末端肉毒毒素/ A裂解敏感(BACS)抗体只识别全长SNAP-25允许SNAP-25的肉毒毒素/ A介导的蛋白水解的评价在小鼠运动神经元表达10。的盐酸法的示意图示于图1。

Protocol

板20000分化的小鼠胚胎干细胞(MES)/孔在96孔聚-D-赖氨酸包被的板并在运动神经元的终末分化培养基维持5-7天。 1.复方管理和中毒与肉毒毒素/ A 执行下列所有工作在BSL2外壳,以保证符合CDC / NIH指南。 在聚丙烯96孔板中制备10mM储备溶液在100%DMSO中的每个库的化合物。使用10mM储备制备中间稀释板,其是10倍高于所需的筛选浓度。制备100μM的中间板通…

Representative Results

从高和低控制数据创建两个不同的群体与两个位数超过3个标准差(图7A)的差。该筛选方法的目的是要找到样品群体中的化合物,其值越接近阳性对照群体,假定样品群体( 图7B中,(i))内的正态分布。数据点,超出平均值的3个标准偏差被认为是从噪声统计上不同的,并且分类为有效的“命中”( 图7B(ii)中 ,红色框)。被归类为“命中”化合物将受?…

Discussion

肉毒杆菌神经毒素,相对缓解他们的武器化的高效力,导致其分类为A类(最高优先级)生物威胁剂由美国疾病控制和预防。不幸的是,没有FDA批准的治疗剂来对抗的BoNT中毒后的毒素已被内化的运动神经元。促进从肉毒毒素中毒的神经元恢复任何成药机制可能会导致对潜在疗法的发展对这种生物的威胁,以保护双方的军种和公众。在这篇文章中,我们提出了一个详细的分析HCI协议进行筛选的致命?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Funding was provided by the Joint Science and Technology Office – Chemical Biological Defense (JSTO-CBD) Defense Threat Reduction Agency (DTRA) under sponsor project number CCAR# CB3675 and National Institutes of Health (1 R21 AI101387-01 and 5 U01AI082051-05).

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
Botulinum neurotoxin A  Metabiologics NA No catalog number
Microtitre plates Greiner  655946 Poly-D-Lysine 96-well plates
BACs antibody Lampire Biological NA
Microchem National  0255
Methanol Thermo Scientific A412-20
Formaldehyde Thermo Scientific 28908
Horse serum Invitrogen 16050
PE JANUS MDT Mini Automated Workstation Perkin Elmer AJMDT01
Opera Perkin Elmer OP-QEHS-01
Triton X 100 Sigma-Aldrich 9002-93-1
BIII tubulin antibody R&D Systems BAM1195
Tween 20 Sigma P1379-1L
Hoechst 33342dye  Invitrogen 3570
Antimouse IgG Invitrogen A21236
Anti rabbit IgG Invitrogen A10042
Columbus Image analysis software Perkin Elmer Ver 2.4
Spotfire Perkin Elmer Ver 5.5
Clorox bleach Fisher Scientific 18-861-284
PlateStack

Referências

  1. Lamanna, C. The most poisonous poison. Science. 130, 763-772 (1959).
  2. Dover, N., Barash, J. R., Hill, K. K., Xie, G., Arnon, S. S. Molecular Characterization of a Novel Botulinum Neurotoxin Type H Gene. J. Infect. Dis. , (2013).
  3. Hakami, R. M., Ruthel, G., Stahl, A. M., Bavari, S. Gaining ground: assays for therapeutics against botulinum neurotoxin. Trends in microbiology. 18, 164-172 (2010).
  4. Yersin, A., et al. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America. 100, 8736-8741 (2003).
  5. Dong, M., Tepp, W. H., Johnson, E. A., Chapman, E. R. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proceedings of the National Academy of Sciences of the United States of America. 101, 14701-14706 (2004).
  6. Stahl, A. M., Adler, M., and, C. B. M., Gilfillan, L. Accelerating botulism therapeutic product development in the Department of Defense. Drug Development Research. 70, 303-326 (2009).
  7. Nuss, J. E., et al. Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies. Journal of biomolecular screening. 15, 42-51 (2010).
  8. Opsenica, I., et al. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. Journal of medicinal chemistry. 54, 1157-1169 (2011).
  9. Opsenica, I., et al. The synthesis of 2,5-bis(4-amidinophenyl)thiophene derivatives providing submicromolar-range inhibition of the botulinum neurotoxin serotype A metalloprotease. European journal of medicinal chemistry. 53, 374-379 (2012).
  10. Nuss, J. E., et al. Pharmacophore Refinement Guides the Rational Design of Nanomolar-Range Inhibitors of the Botulinum Neurotoxin Serotype A Metalloprotease. ACS medicinal chemistry letters. 1, 301-305 (2010).
  11. Kiris, E., et al. Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem cell research. 6, 195-205 (2011).
  12. Pellett, S., et al. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A. Biochemical and biophysical research communications. 405, 673-677 (2011).
  13. McNutt, P., Celver, J., Hamilton, T., Mesngon, M. Embryonic stem cell-derived neurons are a novel, highly sensitive tissue culture platform for botulinum research. Biochemical and biophysical research communications. 405, 85-90 (2011).
  14. Fischer, A., et al. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proceedings of the National Academy of Sciences of the United States of America. 106, 1330-1335 (2009).
check_url/pt/51915?article_type=t

Play Video

Citar este artigo
Kota, K. P., Soloveva, V., Wanner, L. M., Gomba, G., Kiris, E., Panchal, R. G., Kane, C. D., Bavari, S. A High Content Imaging Assay for Identification of Botulinum Neurotoxin Inhibitors. J. Vis. Exp. (93), e51915, doi:10.3791/51915 (2014).

View Video