Summary

Konformationel Evaluering af HIV-1 trimere kappeglycoproteinerne hjælp af en celle-ELISA-assay

Published: September 14, 2014
doi:

Summary

Understanding viral surface antigens conformations is required to evaluate antibody neutralization and guide the design of effective vaccine immunogens. Here we describe a cell-based ELISA assay that allows the study of the recognition of trimeric HIV-1 Env expressed at the surface of transfected cells by specific anti-Env antibodies.

Abstract

HIV-1 envelope glycoproteins (Env) mediate viral entry into target cells and are essential to the infectious cycle. Understanding how those glycoproteins are able to fuel the fusion process through their conformational changes could lead to the design of better, more effective immunogens for vaccine strategies. Here we describe a cell-based ELISA assay that allows studying the recognition of trimeric HIV-1 Env by monoclonal antibodies. Following expression of HIV-1 trimeric Env at the surface of transfected cells, conformation specific anti-Env antibodies are incubated with the cells. A horseradish peroxidase-conjugated secondary antibody and a simple chemiluminescence reaction are then used to detect bound antibodies. This system is highly flexible and can detect Env conformational changes induced by soluble CD4 or cellular proteins. It requires minimal amount of material and no highly-specialized equipment or know-how. Thus, this technique can be established for medium to high throughput screening of antigens and antibodies, such as newly-isolated antibodies.

Introduction

Human immundefekt virus type 1 (HIV-1) indrejse, medieret af de trimere virale kappeglycoproteiner (ENV) er det første skridt i den infektiøse cyklus. Som den eneste udsatte viralt antigen, der præsenteres på overfladen af ​​virioner Env trimeren fremkalder neutraliserende og ikke-neutraliserende antistoffer. Som sådan, det repræsenterer en interessant kandidat til vaccine immunogen design. Men vaccination forsøg med Env i opløselige eller rekombinante former fremkaldte reaktioner med kun minimal effektivitet mod de fleste primært HIV-1-isolater 1-3. Ikke desto mindre, delvis effekt observeret i RV144 vaccineforsøg 4 fornyet interesse for HIV-1 Env som et immunogen kandidat. Dette blev bekræftet af en nylig undersøgelse, der beskriver, at vaccine-fremkaldte anti-Env antistoffer var tilstrækkelig til at frembringe en vis grad af beskyttelse mod SIV og hiv udfordringer 5.

Efter at være blevet syntetiseret i det endoplasmatiske reticulum, Env glycoprotei forstadiet, gp160, gennemgår forskellige post-translationelle modifikationer, der er kritiske for sin evne til at sætte gang virale fusionsprocessen. Env-forstadium skal folde korrekt og associeret i trimerer før blive spaltet i sine ekstra cytoplasmiske gp120 og transmembrane gp41 underenheder 6-10, med ikke-kovalente interaktioner opretholde gp120-gp41-kontakt. Den inficerede celle maskiner er også ansvarlig for kraftigt glycosylere Env, der omfatter omkring 50% af dens samlede masse 11,12. Det resulterende kompleks struktur giver mulighed Env at være konformationelt fleksible 13,14, men samtidig give en metastability, som menes at tillade Env at tilpasse og skjule bestemte højimmunogene epitoper, som ellers ville blive udsat 15-19, fremhæve betydningen for bedre at forstå de forskellige konformationer samplet af den indfødte Env trimeren.

Til dato har adskillige teknikker blevet udviklet og med succes anvendt til at undersøge Env konformationel lmanges. Men de varierer i deres begrænsninger, idet der ofte er begrænset til bestemte Env sammenhænge. For eksempel overfladeplasmonresonans eller immunopræcipitationsanalyser hjælp kropsbygning specifikke monoklonale antistoffer (mAb'er), er afhængige enten monomere opløselige eller solubiliserede Env molekyler, som vides at være immunogenetically forskellige fra deres trimere former 20,21. Nylige undersøgelser tyder også på, at spaltning påvirker Env konformationer resulterer i eksponering af epitoper primært genkendes af neutraliserende antistoffer 14,22,23.

Her beskriver vi i detaljer en metode, der giver mulighed for hurtig og let bestemmelse af konformationen af cellulært udtrykt Env trimerer 18,24-26. Efter transient transfektion Env i en human adhærerende cellelinje bindingen af ​​Env-specifikke antistoffer påvises ved anvendelse af en simpel kemiluminescens reaktion. Denne teknik kan også anvendes til at karakterisere den konformationelle præference konformationsbegrænsende DEPENdent antistoffer. Således dette assay giver en robust og meget fleksibel påvisningsmetode.

Protocol

1. Dag 1 – Cellekultur Plade 2 x 10 4 humane osteosarkom (HOS) celler per brønd i en uigennemsigtig 96-brønds cellekultur plade egnet til luminescens læsning. Brug Dulbeccos Modified Eagle Medium (DMEM) suppleret med 10% føtalt bovint serum (FBS) og 100 U / ml penicillin-streptomycin. Inkuber indtil næste dag ved 37 ° C, 5% CO2. 2. Dag 2 – Polyethylenimine (PEI) Transfection Forbered Transfektionsblandingen ifølge efterfølgende trin. …

Representative Results

Anvendelse af den generelle fremgangsmåde beskrevet ovenfor, vi tilpasset protokol til at analysere virkningen af opløseligt CD4 (sCD4) og co-udtrykkes cellulære CD4 på eksponering CD4i epitoper på enten vildtype (wt) eller muteret Env, som beskrevet tidligere 18,24, Figur 25,28. 1 skematisk viser den generelle procedure, og eksponeringen af CD4i epitoper efter behandling med sCD4 eller ved coekspression af cellulær CD4 18. I figur 2,</stro…

Discussion

Dette assay er optimeret til at detektere interaktionen af ​​specifikke mAb'er med HIV-1 trimer Env udtrykt på celleoverfladen. Når protokollen er blevet etableret, kan den bruges ved medium til høj produktivitet med lave samlede materielle omkostninger og små mængder af antistoffer. Eftersom dette assay er transfektion-baseret, kan det let tilpasses til coekspression af cellulære proteiner, såsom CD4 for at undersøge deres virkninger på Env konformation.

Men transfektion ba…

Declarações

The authors have nothing to disclose.

Acknowledgements

Vi takker Dr. James Robinson for hans generøse gave af A32, 17b, 48d, og C11-mAb'er. PGT 121 blev opnået gennem NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH (Kat # 12343). Dette arbejde blev støttet af en Canada Foundation for Innovation Program Leader # 29866, ved en CIHR operativsystem # 257792 ved en FRQS Etablering af unge videnskabsmand indrømme # 24639 til AF og ved en CRCHUM kontinuum tilskud samt ved en CIHR katalysator tilskud # 126630 til AF og MR. AF er modtageren af ​​en FRSQ Chercheur Boursier Junior 1 fællesskab # 24639. MV blev understøttet af en CIHR ph.d.-forskning Award # 291485.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
HOS cells ATCC CRL-1543
White Opaque Tissue Culture Plate, 96 well, Flat Bottom BD 353296
Polyethylenimine, linear, 25000 MW Polysciences 23966 Prepared in 1mg/ml solution
Dulbecco's Modified Eagle Medium Invitrogen 11995
Goat Anti-Human IgG, Peroxidase Conjugated Pierce 31413
Enhanced Chemiluminescence Substrate PerkinElmer NEL105001EA
TriStar LB 941, Plate Reader Berthold Technologies

Referências

  1. Bures, R., et al. Immunization with recombinant canarypox vectors expressing membrane-anchored glycoprotein 120 followed by glycoprotein 160 boosting fails to generate antibodies that neutralize R5 primary isolates of human immunodeficiency virus type 1. AIDS Res. Human Retroviruses. 16, 2019-2035 (2000).
  2. Koff, W. C. HIV vaccine development: challenges and opportunities towards solving the HIV vaccine-neutralizing antibody problem. Vaccine. 30, 4310-4315 (2012).
  3. Mascola, J. R., et al. Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation. 173, 340-348 (1996).
  4. Rerks-Ngarm, S., et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209-2220 (2009).
  5. Roederer, M., et al. Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature. 505, 502-508 (2014).
  6. Fennie, C., Lasky, L. A. Model for intracellular folding of the human immunodeficiency virus type 1 gp120. J. Virol. 63, 639-646 (1989).
  7. Willey, R. L., Bonifacino, J. S., Potts, B. J., Martin, M. A., Klausner, R. D. Biosynthesis cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc. Natl. Acad. Sci. U.S.A. 85, 9580-9584 (1988).
  8. Bosch, V., Pawlita, M. Mutational analysis of the human immunodeficiency virus type 1 env gene product proteolytic cleavage site. J. Virol. 64, 2337-2344 (1990).
  9. Hallenberger, S., et al. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature. 360, 358-361 (1038).
  10. Li, Y., Luo, L., Thomas, D. Y., Kang, C. Y. The HIV-1 Env protein signal sequence retards its cleavage and down-regulates the glycoprotein folding. Virology. 272, 417-428 (2000).
  11. Leonard, C. K., et al. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265, 10373-10382 (1990).
  12. Wang, W., et al. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology. 10 (14), (2013).
  13. Helseth, E., Olshevsky, U., Furman, C., Sodroski, J. Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein. J. Virol. 65, 2119-2123 (1991).
  14. Haim, H., Salas, I., Sodroski, J. Proteolytic processing of the human immunodeficiency virus envelope glycoprotein precursor decreases conformational flexibility. J. Virol. 87, 1884-1889 (2013).
  15. Chen, L., et al. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science. 326, 1123-1127 (2009).
  16. Kwong, P. D., et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature. 420, 678-682 (2002).
  17. Sakai, K., Takiguchi, M. Toward an effective AIDS vaccine development. Eur. J. Immunol. 43, 3087-3089 (2013).
  18. Veillette, M., et al. Interaction with Cellular CD4 Exposes HIV-1 Envelope Epitopes Targeted by Antibody-Dependent Cell-Mediated Cytotoxicity. J. Virol. 88, 2633-2644 (2014).
  19. Wibmer, C. K., et al. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathogens. 9 (e1003738), (2013).
  20. Kovacs, J. M., et al. HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. Proc. Natl. Acad. Sci. U.S.A. 109, 12111-12116 (2012).
  21. Yuan, W., Bazick, J., Sodroski, J. Characterization of the multiple conformational States of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker. J. Virol. 80, 6725-6737 (2006).
  22. Guttman, M., Lee, K. K. A functional interaction between gp41 and gp120 is observed for monomeric but not oligomeric, uncleaved HIV-1 Env gp140. J. Virol. 87, 11462-11475 (2013).
  23. Ringe, R. P., et al. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc. Natl. Acad. Sci. U.S.A. 110, 18256-18261 (2013).
  24. Desormeaux, A., et al. The highly conserved layer-3 component of the HIV-1 gp120 inner domain is critical for CD4-required conformational transitions. J. Virol. 87, 2549-2562 (2013).
  25. Haim, H., et al. Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathogens. 5 (e1000360), (2009).
  26. Haim, H., et al. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity. PLoS Pathogens. 7 (e1002101), (2011).
  27. Thali, M., et al. Effects of changes in gp120-CD4 binding affinity on human immunodeficiency virus type 1 envelope glycoprotein function and soluble CD4 sensitivity. J. Virol. 65, 5007-5012 (1991).
  28. Medjahed, H., Pacheco, B., Desormeaux, A., Sodroski, J., Finzi, A. The HIV-1 gp120 major variable regions modulate cold inactivation. J. Virol. 87, 4103-4111 (2013).
  29. Thali, M., et al. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J. Virol. 67, 3978-3988 (1993).
  30. Finzi, A., et al. Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol. Cell. 37, 656-667 (2010).
  31. Kassa, A., et al. Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain. J. Virol. 83, 8364-8378 (2009).
  32. Xiang, S. H., et al. Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J. Virol. 76, 9888-9899 (2002).
  33. Mouquet, H., et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. U.S.A. 109, 3268-3277 (2012).
  34. Julien, J. P., et al. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathogens. 9 (e1003342), (2013).
  35. Walker, L. M., et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 477, 466-470 (2011).
  36. Moore, J. P., Willey, R. L., Lewis, G. K., Robinson, J., Sodroski, J. Immunological evidence for interactions between the first, second, and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J. Virol. 68, 6836-6847 (1994).
  37. Robinson, J. E., Yoshiyama, H., Holton, D., Elliott, S., Ho, D. D. Distinct antigenic sites on HIV gp120 identified by a panel of human monoclonal antibodies. J. Cell. Biochem. Suppl. 16E (Q449), (1992).
  38. Bonsignori, M., et al. Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies from an HIV-1 Vaccine Efficacy Trial Target Multiple Epitopes and Preferentially Use the VH1 Gene Family. J. Virol. 86, 11521-11532 (2012).
  39. Brand, D., Srinivasan, K., Sodroski, J. Determinants of human immunodeficiency virus type 1 entry in the CDR2 loop of the CD4 glycoprotein. J. Virol. 69, 166-171 (1995).
check_url/pt/51995?article_type=t

Play Video

Citar este artigo
Veillette, M., Coutu, M., Richard, J., Batraville, L., Désormeaux, A., Roger, M., Finzi, A. Conformational Evaluation of HIV-1 Trimeric Envelope Glycoproteins Using a Cell-based ELISA Assay. J. Vis. Exp. (91), e51995, doi:10.3791/51995 (2014).

View Video