Summary

集成的三重态 - 三重态湮灭上转换系统,提高染料敏化太阳能电池的响应子带隙光

Published: September 12, 2014
doi:

Summary

一个集成的设备,掺入的染料敏化太阳能电池与三重态 – 三重态湮灭升压转换单元制作,得到增强的光收获,从太阳光谱的较宽部分。在温和的辐射水平显著增强应对低能光子证实,得到好处的创纪录的数字为染料敏化太阳能电池。

Abstract

染料敏化太阳能电池(DSC)的红色和红外光的反应冷淡是显著妨碍实现更高的光电流,从而提高效率。光子上转换用的三重态 – 三重态湮灭的方式(TTA-UC)是一个有吸引力的技术,对于使用这些否则浪费掉的低能量光子产生的光电流,而不是与以有害的方式将photoanodic性能的干扰。进一步向此,TTA-UC具有许多功能,从其它报道光子上转换技术截然不同,这使得它特别适合于用DSC技术耦合。在这项工作中,经过验证的高性能TTA-UC系统,包括钯卟啉敏化剂和红荧烯发射器,结合了高性能的DSC(利用有机染料D149)于一体的综合设备。该装置示出了一个增强的响应子带隙光随所得的最高网络连接的吸收范围的TTA-UC子单元的gure优异的上转换辅助DSC性能过时。

Introduction

染料敏化太阳能电池(DSC)的已被宣布为一个有前途的概念,经济实惠的太阳能收集1-3。虽然如此热情,广泛的商业化还没有出现。有许多原因已提出了这一点,与一个迫切的问题是吸收发病的相对高的能量,限制了这些器件4的可实现的光捕获效率。虽然这是可以克服的,从而降低了吸收发病通常伴随着在开路电压的降低,过多地削弱了在电流密度为5,6的任何增益。

DSC中的一般操作涉及从光激发染料的半导体(一般为氧化钛),其次是氧化染料通过氧化还原介体的再生的电子转移。这两个过程似乎需要大量的驱动力(电势),以进行高效率7 </suP>。有了这样显著固有的损耗,它变得很明显,最佳的吸收发生在这些设备是相当高的能量。为有机光伏(OPV),由于所需的有效电荷分离的大的化学驱动力存在再次类似的问题。因此,上部太阳能到电的转换效率限制到基于这两种技术的单结器件的预测涉及吸收剂具有宽的(有效)的带隙4。

为了克服以上提出的光收获问题,一些方法已被采取。这包括“第三代”8的方法串联结构9,第10和光子上转换11-14。

最近11我们报道的DSC的工作和反电极组成的一体化设备,具有三重态-三重态湮灭基础上转换(TTA-UC)的注册系统到的结构。这TTA-UC元件是能收获穿过活性层发射的红光和化学转换(如在下面详细描述),以更高的能量的光子可能通过DSC的活性层所吸收,并产生光电流。还有要注意有关该系统的两个重要点。首先,TTA-UC比其他的光子上转换系统11许多潜在的优势;其次,它展示了一个可行的架构(证明型原则)为TTA-UC,还有所欠缺的TTA-UC文学到该点的结合。

TTA-UC 15-24的方法涉及“敏化剂”分子的激发,在此情况下钯卟啉,通过光与下面的设备发病能量的能量。单线激敏进行快速系统间跨越到能量最低的三重态。从那里,他们可以传递能量到基态三重接受“射&#8217;种类,例如红荧烯,只要传递被允许通过自由能25。红荧烯的第一三线态(T 1)大于它的第一激发单重态(S 1),但在T 2的不到一半的能量一半的能量,也就是说,两个三态激励rubrenes一遇到复杂的可以消灭到举一个单重激发发射剂分子(以及其他在基态)以相当高的概率。其他国家,统计预测,最有可能大力人迹罕至的红荧烯26。然后将单重激发红荧烯分子能够发射光子(按照荧光)与能量足以激发染料在DSC的工作电极。这个过程示于动画1。

TTA-UC提供了许多优点相比其他的UC系统,如广泛吸收范围和不连贯性27,28,使它成为一个有吸引力的选择腠用DSC耦(以及OPV)。 TTA-UC已被证实在相对低的光强度和在漫射照明条件下操作。无论是DSC和OPV是最有效的在低光强的制度。太阳能浓度是昂贵的且仅正当的高效率,成本高的设备。 TTA-UC系统,可在低强度光照条件下的相对高的性能,是由于涉及到与强,宽吸收带敏化剂的发色团在音乐会和长寿命的三线态,其能够扩散的顺序,以与相互反应的物质接触的过程。此外,TTA-UC已被发现具有高的固有效率从动力学研究26。

虽然TTA-UC工作在低的光强度,但仍然(至少在低光强度)与入射光强度和射出光之间的二次关系。这是由于该方法的双分子性质。考虑到对于这一点,报告的不同群体的不同实验条件(尤其是光的强度),择优录取(FOM)系统的数字应采用米乘上转换所提供的性能增强。这FOM被定义为ΔJSC /ʘ,其中ΔJSC是增加的短路电流(通常由积分入射光子的确定载流子的效率,IPCE,有和没有上转换效应)和ʘ是有效的太阳能浓度(基于在相关区域中的光子通量,即敏化剂的Q带吸收)2 29。

在这里,一个协议,用于生产和正确表征集成的DSC-TTA-UC设备被报道,特别关注在设备检测潜在的隐患。希望这将成为在这一领域的进一步工作的基础。

Protocol

1,DSC制造 1.1。工作电极的制备的F干净的整片:SnO 2的涂覆的玻璃(110毫米×110毫米×2.3毫米,<8Ω/□),通过顺序地超声处理在肥皂水中,然后用丙酮,最后乙醇(每次10分钟)。 沉积一层致密的二氧化钛遵循以下步骤: 干玻璃用压缩空气和耐热玻璃〜450℃的热板(导电面朝上)。 稀二异丙醇钛双(乙酰丙酮)(异丙醇75重量%)?…

Representative Results

不同的测量条件下测量的三维显示增强的响应,以影响在下文中更详细地讨论- 图3A。从原始电流密度的增强,应当清楚,这些结果在图4A和4B是归属于上转换,与峰值电流的提高和IPCE增强与吸收光谱的敏化剂,通过在有源层衰减传输匹配良好DSC。 为了避免由激光施力泵浦光束引入测量工件已被调整到在UC层以较大的角度,以?…

Discussion

该协议提供了实现光子上转换增强DSC和细节上如何正确衡量这种装置的方法。 FOM的允许可以预料,在不同光照强度的预期ΔJSC改进了简单的计算,包括1太阳。这里示出的值是不变的光强度( 图4的插图),为每期望当系统处于低于其饱和度阈值33。与FOM,我们可以标准化TTA-UC或其它非直线UC过程的增强效果,以允许容易地比较。

虽然在本研究中得?…

Declarações

The authors have nothing to disclose.

Acknowledgements

A.N. acknowledges contributions from the Australian Renewable Energy Agency (ARENA) and the Australian National Fabrication Facility (ANFF). This research project is funded by the Australian Solar Institute (6-F020 and A-023), with contributions from The New South Wales Government and the University of Sydney. Aspects of this research were supported under Australian Research Council’s Discovery Projects funding scheme (DP110103300). Equipment was purchased with support from the Australian Research Council (LE0668257).

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
(tetrakis(3,5-di-tert-butylphenyl)-6’-amino-7’-nitro-tetrakisquinoxalino[2,3-b'7,8-b''12,13-b'''17,18-b''''-porphyrinato) palladium(II)) in house in house Chem. Commun., 4851–4853 (2007)
1,2-dimethyl-3-propylimidazolium iodide Solaronix 33150 Material warning: Irritant
405 nm longpass filter Semrock BLP01-405R-25
670 nm laser Thorlabs LDS5 + CPS198
Acetone Chemsupply AA008-20L-P Material warning: Flammable
Acetonitrile Sigma 271004 Material warning: Flammable
Alumina Alfa Aesar 12733
Alumina Leeco 810-782
Back filling chamber Sistema 1303 Kilip it round, modified
Benzene Scharlau BE0033 Material warning: Toxic
BNC cable Jaycar RG- 59U
Cerasolzer MBR CS186
Chopper wheel Thorlabs MC1000A
Control software in house in house Written in LabVIEW
Current Amplifier Standford Research  SR 570
D149 dye 1m OSO149
Dental burr Priority dental supplies 835.104.008
Detergent Palmolive Original
Diamond wheel Frameco 14220
Drill Dremmel 220
Dynamic dignal acquisition device National Instruments USB-4431 Analog to Digital
Ethanol Univar 214 Material warning: Flammable
F:SnO2 glass Hartford TEC8 2.3mm, < 8 Ω/□
Glovebox IT systems
H2PtCl6 Sigma 334472 Material warning: corrosive
Hot melt adhesive gasket Solaronix Meltronic 1170-25 Surlyn
Hot melt adhesive gasket Solaronix Meltronix 1170-60 Surlyn
Hotplate Harry Gestigkeit PR 5 3T / PZ28-3T
Hotplate IKA RCT basic
Image analysis software National Institutes for Health Image-J
Iodine Sigma 326143 Material warning: corrosive
Laser engraver Universal Laser Systems PLS6WM
Liquid Nitrogen Air Liquide
Lithium Iodide Aldrich 518018 Material warning: toxic
Methoxypropionitrile Sigma 65290 Material warning: Flammable
Mirror Thorlabs PF10-03-P01
Mirror mount Thorlabs KM100
Monochromator Spectral Products  CM110
Neutral density filters Edmund Industrial Optics 64-352
Parabolic mirror Newport 50329AL, 50338AL
Photodiode Newport 918D-UV-OD3
Power meter Newport 1936-C
Rubrene Sigma 551112
Semi-automatic screen printer Keywell KY-500FH
Spray pyrolyser Glaskeller
Tape 3M Magic Tape
Terminal block Jaycar HM3194
tert-Butanol Sigma 360538 Material warning: Flammable
TiCl4 Sigma 89545 Material warning: corrosive
Tile Johnson tiles
Tile cutter DTA DTA-310
TiO2 paste Dyesol NR18-T
Titanium diisopropoxide bis(acetylacetonate) (75% in isopropanol) Aldrich 325252 Material warning: Flammable
Ultrasonic soldering iron MBR USS-9200
UV cure epoxy Dymax 425 Material warning: Irritant
UV cure system Dymax BlueWave 50
UV Visible Spectrophotometer Varian Cary 1E
Vacuum cuvette Custom made Custom made
Vacuum pump N/A Rotary backed diffusion pump
Wipes Kimtech 34120KC Kimwipes
Xe lamp Energetiq  LDLSTM EQ-1500 White light source

Referências

  1. O’Regan, B., Grätzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature. 353, 737-740 (1991).
  2. Grätzel, M. Photoelectrochemical cells. Nature. 414 (6861), 338-344 (2001).
  3. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 110 (11), 6595-6663 (2010).
  4. Tayebjee, M. J. Y., Hirst, L. C., Ekins-Daukes, N. J., Schmidt, T. W. The efficiency limit of solar cells with molecular absorbers: A master equation approach. J. Appl. Phys. 108, 124506 (2010).
  5. Daeneke, T., Gräf, K., Watkins, S. E., Thelakkat, M., Bach, U. Infrared Sensitizers in Titania-Based Dye-Sensitized Solar Cells using a Dimethylferrocene Electrolyte. ChemSusChem. 6, 2056-2060 (2013).
  6. Tian, H. N., Yang, X., Chen, R., Hagfelt, A., Sun, L. A metal-free “black dye” for panchromatic dye-sensitized solar cells. Energ. Environ. Sci. 2 (6), 674-677 (2009).
  7. Daeneke, T., et al. Dye Regeneration Kinetics in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 134 (41), 16925-16928 (2012).
  8. Green, M. A. . Third Generation Photovoltaics: Advanced Solar Energy Conversion. , (2003).
  9. He, J. J., Lindström, H., Hagfeldt, A., Lindquist, S. E. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys. Chem. B. 103 (42), 8940-8943 (1999).
  10. Nattestad, A., et al. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 9 (1), 31-35 (2010).
  11. Nattestad, A., et al. Dye-Sensitized Solar Cell with Integrated Triplet-Triplet Annihilation Upconversion System. J. Phys. Chem. Lett. 4 (12), 2073-2078 (2013).
  12. Liu, M., Lu, Y., Xie, Z. B., Chow, G. M. Enhancing Near-Infrared Solar Cell Response Using Upconverting Transparent Ceramics. Sol. Energ. Mat. Sol. C. 95, 800-803 (2011).
  13. Shan, G. B., Demopolous, G. P. Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells Via the Insertion of an Upconverter-TiO2 Nanocomposite Layer. Adv. Mater. 22, 4374-4377 (2010).
  14. Yuan, C., et al. Use of Colloidal Upconversion Nanocrystals for Energy Relay Solar Cell Light Harvesting in the Near-Infrared Region. J. Mater. Chem. 22, 16709-16713 (2012).
  15. Cheng, Y. Y., et al. Molecular Approaches to Third Generation Photovoltaics: Photochemical Up-conversion. Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion. , 7772-7777 (2010).
  16. Parker, C. A., Hatchard, C. G. Delayed Fluorescence from solutions of Anthracene and Phenanthracene. P. R. Soc. London. 269, 574-584 (1962).
  17. Zhao, J., Ji, S., Guo, H. Triplet-Triplet Annihilation Based Upconversion: From Triplet Sensitizers and Triplet Acceptors to Upconversion Quantum Yields. RSC Adv. 1, 937-950 (2011).
  18. Singh-Rachford, T. N., Castellano, F. N. Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation. Coordin. Chem. Rev. 254, 2560-2573 (2010).
  19. Baluschev, S., et al. Up-Conversion Fluorescence: Noncoherent Excitation by Sunlight. Phys. Rev. Lett. 97, 143903 (2006).
  20. Ceroni, P. Energy Up-Conversion by Low-Power Excitation: New Applications of an Old Concept. Chem. Eur. J. 17, 9560-9564 (2011).
  21. Penconi, M., Ortica, F., Elisei, F., Gentili, P. G. New Molecular Pairs for Low Power Non-Coherent Triplet-Triplet Annihilation Based Upconversion: Dependence on the Triplet Energies of Sensitizer and Emitter. J. Lumin. 135, 265-270 (2013).
  22. Liu, Q., Yang, T., Feng, F., Li, F. Blue-Emissive Upconversion Nanoparticles for Low-Power-Excited Bioimaging in Vivo. J. Am. Chem. Soc. 134, 5390-5397 (2012).
  23. Simon, Y. C., Weder, C. Low-Power Photon Upconversion through Triplet-Triplet Annihilation in Polymers. J. Mater. Chem. 22, 20817-20830 (2012).
  24. Jankus, V., et al. Energy Conversion via Triplet Fusion in Super Yellow PPV Films Doped with Palladium Tetraphenyltetrabenzoporphyrin: a Comprehensive Investigation of Exciton Dynamics. Adv. Funct. Mater. 23, 384-393 (2013).
  25. Cheng, Y. Y., et al. Entropically Driven Photochemical Upconversion. J. Phys. Chem. A. 115, 1047-1053 (2011).
  26. Cheng, Y. Y., et al. Kinetic Analysis of Photochemical Upconversion by Triplet-Triplet Annihilation: Beyond Any Spin Statistical Limit. J. Phys. Chem. Lett. 1 (12), 1795-1799 (2010).
  27. Baluschev, B., et al. Upconversion with ultrabroad excitation band: Simultaneous use of two sensitizers. Appl. Phys. Lett. 90, 181103 (2007).
  28. Borjesson, K., et al. Photon upconversion facilitated molecular solar energy storage. J. Mater. Chem. A. 1, 8521-8524 (2013).
  29. Cheng, Y. Y., et al. Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energ. Environ. Sci. 5 (5), 6953-6959 (2012).
  30. Dominici, L., Kosyachenko, L. A. Dye-Sensitized Solar Cells: Basic Photon Management Strategies. Solar Cells – Dye-Sensitized Devices. , 291 (2011).
  31. Schulze, T. F., et al. Photochemical Upconversion Enhanced Solar Cells: Effect of a Back Reflector. Aust. J. Chem. 65 (5), 480-485 (2012).
  32. Schulze, T. F., et al. Efficiency Enhancement of Organic and Thin-Film Silicon Solar Cells with Photochemical Upconversion. J. Phys. Chem. C. 116 (43), 22794-22801 (2012).
  33. Haefele, A., Blumhoff, B., Khnayzer, R. S., Castellano, F. Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear. J. Phys. Chem. Lett. 3, 299-303 (2012).
  34. Lewitzka, F., Löhmannsröben, H. G. Investigation of Triplet Teracene and Triplet Rubrene in Solution. Z. Phys. Chem. 150, 69-86 (1986).
  35. Ventura, B., Esposti, A. D., Koszarna, B., Gryko, D. T., Flamigni, L. Photophysical characterization of free-base corroles, promising chromophores for light energy conversion and singlet oxygen generation. New J. Chem. 29, 1559-1566 (2005).
  36. MacQueen, R. W., et al. Nanostructured upconverters for improved solar cell performance. Proceedings SPIE. 8824, 882408-882409 (2013).
  37. Yella, A., et al. Porpyrin-sensitized Solar Cells with Cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science. 334, 629-634 (2011).
check_url/pt/52028?article_type=t

Play Video

Citar este artigo
Nattestad, A., Cheng, Y. Y., MacQueen, R. W., Wallace, G. G., Schmidt, T. W. Integrating a Triplet-triplet Annihilation Up-conversion System to Enhance Dye-sensitized Solar Cell Response to Sub-bandgap Light. J. Vis. Exp. (91), e52028, doi:10.3791/52028 (2014).

View Video