Summary

血管球囊损伤和腔内管理在大鼠颈动脉

Published: December 23, 2014
doi:

Summary

该协议使用球囊导管引起的大鼠颈动脉腔内损伤,从此引起内膜增生。这是一个公认的模型用于研究在响应损伤的血管重塑的机制。它也被广泛使用,以确定潜在的治疗方法的有效性。

Abstract

大鼠颈动脉球囊损伤模型已经确立了二十多年。它仍然是学习与之相关的血管平滑肌分化,形成内膜和血管重塑的分子和细胞机制的重要方法。雄性Sprague-Dawley大鼠是最经常使用的动物为这种模式。雌性大鼠不优选的,因为雌激素是保护性防止血管疾病,因而引入一个变化成此过程。左颈通常受伤与右颈动脉作为阴性对照。左颈损伤是由膨胀的气球是滥伐内皮和扩张S中的血管壁造成的。损伤后,潜在的治疗策略,例如使用药物化合物和任一基因或shRNA转移的进行评估。典型地,对于基因或shRNA转移,血管腔的受伤部分被局部转30分钟,用viral粒子交付和表达了受伤的血管壁或者编码蛋白质或shRNA。新内膜增厚较增殖的血管平滑肌细胞通常损伤后峰值在2周。船只大多收获用于细胞和分子的细胞信号转导途径的分析以及基因和蛋白表达该时间点。容器也可收获在较早时间点,以确定一个特定的蛋白质或途径的表达和/或活化的发作,这取决于预期的实验目的。容器可以被表征和评价使用组织染色,免疫组织化学,蛋白质/表达测定法,和活性测定。来自同一动物的完整右颈动脉是一种理想的内部控制。在分子和细胞损伤的参数引起的变化可以通过动脉受伤比较内部右控制动脉进行评估。同样地,治疗方法可以通过比较损伤进行评估D和治疗动脉控制只受伤的动脉。

Introduction

气囊导管在血管成形术的过程中使用,以扩大或动脉粥样硬化血栓阻塞网站,在血管的目的的医疗器械。变窄的血管腔被强制由膨胀的气球,以开放和血液供应将被顺序地恢复到解除下游局部缺血症状,例如心绞痛,心肌梗塞,和腿痛。然而,血管成形术的巨大成功已经减少了术后并发症如力结果引起血管气压伤(球囊损伤),即血管壁重塑,在很多情况下,再狭窄的血管腔(再狭窄)1。

已经开发了许多动物模型模仿血管成形术,以帮助研究人员了解球囊损伤有关的血管壁重塑2背后的机制。在所有的用于建模的动物物种,鼠是最经常使用的一个。 Çompared到兔,狗和猪,鼠的优势是其成本低,其相对的易用性和大鼠生理学的现有知识。虽然小鼠具有一个额外的优势在广泛基因操作的菌株,小鼠容器太小,插入气囊导管。在过去的三十年里,实验组大鼠已使研究人员能够更好地了解支撑内膜增生及血管重塑3-6的分子和细胞机制。超越球囊损伤,血管重塑也参与大多数主要血管疾病,如动脉粥样硬化7,8,高血压9和动脉瘤10。因此,知识通过球囊损伤模型,获得了在一般的整体血管壁病变的研究是有益的。

大鼠球囊损伤模型的总体目标是不仅要进一步理解的血管疾病,而且,以测试新的药剂的效力为疾病控制11,12。目前临床药物治疗再狭窄是由血管成形术后右经血管腔放置药物洗脱支架应用。在动物模型中,一个高效而更经济的方式为新代理的测试是一个发达的地方腔内灌注的方法。已通过这种方法进行了测试候选药物包括小分子药物13,14,细胞因子或生长因子15,16,基因操纵剂(cDNA克隆,的siRNA )17-20,以及新颖的药物制剂21,22。

到目前为止,大鼠球囊损伤模型仍然是研究血管疾病/病症的最有用的模型之一。它是从台架的基本步骤到床头,通常作为第一步骤,从体外移动到体内 ,但它不应该是最后一个。大鼠实验的结果需要被审议和进一步的特征在于转换到人体之前临床使用时,由于在血管床和容器解剖学以及人和大鼠23-26之间的内在物种差异的差异。尽管如此,它仍然是在转化医学研究的重要工具。虽然这种研究用于因缺乏转基因鼠的限制,它已不再是一个问题,因为新的基因组的方法,如锌指核酸酶27,TALENS 28和CRISPR-CAS 29取得淘汰赛大鼠方便。

Protocol

注意:利用动物进行下面的实验已经进行了审查和批准的机构动物护理和使用委员会(IACUC)。 1.术前手续在使用前消毒手术器械。 高压灭菌所有手术器械24小时或更少的手术前。如果多次手术均在同一天进行的,通过在手术之间的干珠灭菌消毒的器械。 过滤消毒后再使用盐溶液。 称量大鼠和计算的麻醉药物(氯胺酮80 mg / kg和赛拉嗪7?…

Representative Results

伤后两周内,颈动脉被收获,切片并进行形态分析。动脉是横切片并用H&E( 图1,图2B,C和3)。大鼠颈动脉壁包含四层弹性膜,它显示为粉色系。最外层片材,外弹性膜(EEL)和最内层椎板之间的区域,内弹性膜(IEL)是媒体平滑肌层( 图1)。在IEL的内侧的区域为内膜,内皮细胞完好容器的单层;或内膜增生血管损伤。在受损的颈动脉中,媒体比因平滑肌细胞增殖的控?…

Discussion

大鼠颈动脉球囊损伤一直深受Tulis在2007年34说明,它已全面通过Tulis博士讨论了此过程的所有细节。谁是有意执行此过程的读者强烈推荐阅读Tulis“协议。然而,有一件事我们不Tulis博士同意:除了充气用生理盐水或任何液体的气球,我们建议与空气膨胀了。根据我们的个人经验,液体膨胀难以避免气泡。此外,它更难以灵活调整损伤过程中的压力,并可能导致额外的压力和伤害到动脉。另一个技术技巧是…

Declarações

The authors have nothing to disclose.

Acknowledgements

We are grateful to Dr. Clowes for first developing and describing this method. We are also thankful to Dr. Tulis for his detailed protocol which has been fundamentally helpful to our previous, current and future work. This work was supported by grants R01HL097111 and R01HL123364 from the NIH to M.T., and by American Heart Association grant 14GRNT18880008 to M.T.

We would like to thank Rachel Newton for her expert technical support and for her valuable help during the filming process.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Fogarty balloon embolectomy catheters, 2 French  Edwards Lifesciences, Germany  120602F
Deltaphase Operating Board – Includes 2 Pads & 2 Insulators Braintree Scientific, Inc. 39OP
 LED light source Fisher Scientific 12-563-501 
Hartmann Mosquito Forceps 4” curved Apiary Medical, Inc. San Diego, CA gS 22.1670
Crile Retractor 4” double ended Apiary Medical, Inc. gS 34.1934
Other surgical instruments Roboz Surgical Instrument Company, Inc., Gaithersburg, MD
Peripheral Intravenous (I.V.) Cannula, 24G BD 381312
Ketamine HCl, 100mg/mL, 10mL Ketaset- Patterson Vet 07-803-6637 
Xylazine (AnaSed),20mg/mL,20mL Ketaset- Patterson Vet 07-808-1947
Buprenex, 0.3mg/1ml (5 Ampules/Box) Ketaset- Patterson Vet 07-850-2280
Nair Baby Oil Hair Removal Lotion-9 oz Amazon/Walmart/CVS N/A
Inflation Device Demax Medical DID30
D300 3-way Stopcock B.Braun Medical Inc. 4599543
Artificial Tears Ointment  Rugby Laboratories, Duluth, GA N/A

Referências

  1. Landzberg, B. R., Frishman, W. H., Lerrick, K. Pathophysiology and pharmacological approaches for prevention of coronary artery restenosis following coronary artery balloon angioplasty and related procedures. Progress in Cardiovascular Diseases. 39, 361-398 (1997).
  2. Muller, D. W., Ellis, S. G., Topol, E. J. Experimental models of coronary artery restenosis. J. Am. Coll. Cardiol. 19, 418-432 (1992).
  3. Clowes, A. W., Reidy, M. A., Clowes, M. M. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Laboratory Investigation: A Journal of Technical Methods and Pathology. 49, 327-333 (1983).
  4. Clowes, A. W., Reidy, M. A., Clowes, M. M. Mechanisms of stenosis after arterial injury. Laboratory Investigation: A Journal of Technical Methods and Pathology. 49, 208-215 (1983).
  5. Clowes, A. W., Clowes, M. M. Kinetics of cellular proliferation after arterial injury. IV. Heparin inhibits rat smooth muscle mitogenesis and migration. Circulation Research. 58, 839-845 (1986).
  6. Li, G., Chen, S. J., Oparil, S., Chen, Y. F., Thompson, J. A. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation. 101, 1362-1365 (2000).
  7. Kiechl, S., Willeit, J. The natural course of atherosclerosis. Part II: vascular remodeling. Bruneck Study Group. Arteriosclerosis, Thrombosis, and Vascular Biology. 19, 1491-1498 (1999).
  8. Yamamoto, S., et al. Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout rats. Transgenic Research. 21, 743-755 (2012).
  9. Intengan, H. D., Schiffrin, E. L. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 38, 581-587 (2001).
  10. Meng, H., et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 38, 1924-1931 (2007).
  11. Sun, C. K., Shao, P. L., Wang, C. J., Yip, H. K. Study of vascular injuries using endothelial denudation model and the therapeutic application of shock wave: a review. American Journal of Rranslational Research. 3, 259-268 (2011).
  12. Zhang, W., et al. Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circulation Research. 109, 534-542 (2011).
  13. Ollinger, R., et al. Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation. Circulation. 112, 1030-1039 (2005).
  14. Levitzki, A. PDGF receptor kinase inhibitors for the treatment of restenosis. Cardiovascular Research. 65, 581-586 (2005).
  15. Asahara, T., et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation. 91, 2793-2801 (1995).
  16. Lee, K. M., et al. Alpha-lipoic acid inhibits fractalkine expression and prevents neointimal hyperplasia after balloon injury in rat carotid artery. Atherosclerosis. 189, 106-114 (2006).
  17. Ji, R., et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Research. 100, 1579-1588 (2007).
  18. Merlet, E., et al. miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovascular Research. 98, 458-468 (2013).
  19. Huang, J., Niu, X. L., Pippen, A. M., Annex, B. H., Kontos, C. D. Adenovirus-mediated intraarterial delivery of PTEN inhibits neointimal hyperplasia. Arteriosclerosis, Thrombosis, And Vascular Biology. 25, 354-358 (2005).
  20. Gonzalez-Cobos, J. C., et al. Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circulation Research. 112, 1013-1025 (2013).
  21. Guzman, L. A., et al. Local intraluminal infusion of biodegradable polymeric nanoparticles. A novel approach for prolonged drug delivery after balloon angioplasty. Circulation. 94, 1441-1448 (1996).
  22. Lipke, E. A., West, J. L. Localized delivery of nitric oxide from hydrogels inhibits neointima formation in a rat carotid balloon injury model. Acta Biomaterialia. 1, 597-606 (2005).
  23. Osterrieder, W., et al. Role of angiotensin II in injury-induced neointima formation in rats. Hypertension. 18, II60-II64 (1991).
  24. Powell, J. S., et al. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science. 245, 186-188 (1989).
  25. . Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR study: a multicenter, randomized, double-blind placebo-controlled trial. Multicenter European Research Trial with Cilazapril after Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MERCATOR) Study Group. Circulation. 86, 100-110 (1992).
  26. Faxon, D. P. Effect of high dose angiotensin-converting enzyme inhibition on restenosis: final results of the MARCATOR Study, a multicenter, double-blind, placebo-controlled trial of cilazapril. The Multicenter American Research Trial With Cilazapril After Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MARCATOR) Study Group. J Am Coll Cardiol. 25, 362-369 (1995).
  27. Geurts, A. M., et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 325, 433 (2009).
  28. Tesson, L., et al. Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology. 29, 695-696 (2011).
  29. Li, D., et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology. 31, 681-683 (2013).
  30. Potier, M., et al. Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB Journal : Official Publication Of The Federation Of American Societies For Experimental Biology. 23, 2425-2437 (2009).
  31. Aubart, F. C., et al. RNA interference targeting STIM1 suppresses vascular smooth muscle cell proliferation and neointima formation in the rat. Molecular Therapy. The Journal Of The American Society Of Gene Therapy. 17, 455-462 (2009).
  32. Berra-Romani, R., Mazzocco-Spezzia, A., Pulina, M. V., Golovina, V. A. Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. American journal of physiology. Cell Physiology. 295, C779-C790 (2008).
  33. Bisaillon, J. M., et al. Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. American journal of physiology. Cell Physiology. 298, C993-C1005 (2010).
  34. Tulis, D. A. Rat carotid artery balloon injury model. Methods In Molecular Medicine. 139, 1-30 (2007).
  35. Zhang, W., Trebak, M., Szallasi, A., Bíró, T. Balloon Injury in Rats as a Model for Studying TRP Channel Contribution to Vascular Smooth Muscle Remodeling. T TRP Channels in Drug DiscoveryMethods in Pharmacology and Toxicology. , 101-111 (2012).
  36. Tulis, D. A. Histological and morphometric analyses for rat carotid balloon injury model). Methods In Molecular Medicine. 139, 31-66 (2007).
check_url/pt/52045?article_type=t

Play Video

Citar este artigo
Zhang, W., Trebak, M. Vascular Balloon Injury and Intraluminal Administration in Rat Carotid Artery. J. Vis. Exp. (94), e52045, doi:10.3791/52045 (2014).

View Video