Summary

Fluorescens-quenching af et liposomalt indkapslet Near-infrarøde fluorofor som et værktøj til<em> In Vivo</em> Optisk Imaging

Published: January 05, 2015
doi:

Summary

The use of fluorophores for in vivo imaging can be greatly limited by opsonization, rapid clearance, low detection sensitivity and cytotoxic effects on the host. Encapsulation of fluorophores in liposomes by film hydration and extrusion leads to fluorescence quenching and protection which enables in vivo imaging with high detection sensitivity.

Abstract

Optical imaging offers a wide range of diagnostic modalities and has attracted a lot of interest as a tool for biomedical imaging. Despite the enormous number of imaging techniques currently available and the progress in instrumentation, there is still a need for highly sensitive probes that are suitable for in vivo imaging. One typical problem of available preclinical fluorescent probes is their rapid clearance in vivo, which reduces their imaging sensitivity. To circumvent rapid clearance, increase number of dye molecules at the target site, and thereby reduce background autofluorescence, encapsulation of the near-infrared fluorescent dye, DY-676-COOH in liposomes and verification of its potential for in vivo imaging of inflammation was done. DY-676 is known for its ability to self-quench at high concentrations. We first determined the concentration suitable for self-quenching, and then encapsulated this quenching concentration into the aqueous interior of PEGylated liposomes. To substantiate the quenching and activation potential of the liposomes we use a harsh freezing method which leads to damage of liposomal membranes without affecting the encapsulated dye. The liposomes characterized by a high level of fluorescence quenching were termed Lip-Q. We show by experiments with different cell lines that uptake of Lip-Q is predominantly by phagocytosis which in turn enabled the characterization of its potential as a tool for in vivo imaging of inflammation in mice models. Furthermore, we use a zymosan-induced edema model in mice to substantiate the potential of Lip-Q in optical imaging of inflammation in vivo. Considering possible uptake due to inflammation-induced enhanced permeability and retention (EPR) effect, an always-on liposome formulation with low, non-quenched concentration of DY-676-COOH (termed Lip-dQ) and the free DY-676-COOH were compared with Lip-Q in animal trials.

Introduction

Liposomer er blevet intensivt undersøgt og tjener som en af de mest biokompatible biomedicinske medikamentleveringssystemer for kliniske anvendelser 1,2. De er hovedsageligt sammensat af phospholipider og cholesterol, som begge er biokompatible forbindelser efterligner dele af naturlige cellemembraner. Betragtninger hydrofile stoffer kan indesluttes i det vandige indre, kan lipofile midler inkorporeres i den liposomale phospholipid dobbeltlag 3. Indkapsling af stoffer i det vandige indre af liposomer giver beskyttelse mod nedbrydning in vivo og forhindrer også værtssystemet fra toksiske virkninger på cytotoksiske lægemidler, der anvendes til behandling af sygdomme, for eksempel kemoterapeutiske midler med henblik på at ødelægge tumorceller. Modifikationen af den liposomale overflade med polymerer, såsom polyethylenglycol (PEGylering) strækker sig længere den liposomale blodcirkulationen in vivo på grund af steriske 4 stabilisering. MoreovER, liposomer kan udskille høje koncentrationer af flere stoffer, såsom proteiner 5,6, hydrofile stoffer 7,8 og enzymer 9. De tjener derfor som pålidelige kliniske terapeutiske og diagnostiske værktøjer, som fortjener deres godkendelse til levering af cytotoksiske lægemidler, såsom doxorubicin til kræftbehandling 4. På grund af deres fleksibilitet, kan liposomer også fyldt med fluorochromer til diagnostiske og billed-guidede kirurgiske formål.

Fluorescensimagografi tilvejebringer en omkostningseffektiv og ikke-invasiv in vivo diagnostisk værktøj, som dog kræver nogle grundlæggende krav. Det kunne påvises, at fluorokromer, der passer bedst til in vivo imaging har karakteristisk absorption og emissionsmaksima i området, hvor lysspredning og spredning samt væv autofluorescens stammer fra vand og hæmoglobin er lav. Således sådanne prober har deres abs / em maxima mellem 650 og 900 nm 10. Udover dette, stabilitet fluorokromer både in vitro og in vivo er kritisk, da opsonisering og hurtig clearance i høj grad kan begrænse anvendelsen til in vivo imaging 11. Andre effekter såsom dårlig stabilitet og lav følsomhed eller cytotoksiske virkninger på målorganer som set med indocyaningrøn (ICG) 12-16, er uønsket og bør tages i betragtning ved udformningen af prober til in vivo billeddannelse. Disse observationer har ført til aktiv udvikling af flere prækliniske NIR fluorochromer, nanopartikler samt nye teknikker til in vivo-afbildning af inflammatoriske processer, kræft og til billedbehandling-guidet kirurgi 17-20. Trods stabilitet mest præklinisk NIRF (nær-infrarød fluorescens) farvestoffer in vitro, deres hurtige perfusion og clearance gennem leveren og nyren hindre deres anvendelse i in vivo optisk billeddannelse af sygdomme og inflammatoriske processer.

ntent "> Vi har derfor præsentere en protokol til indkapsling af fluorokromer såsom godt karakteriseret nærinfrarøde fluorescerende farvestof DY-676-COOH, kendt for sin tendens til selv-dæmpningen ved relativt høje koncentrationer 21 i liposomer. Ved høje koncentrationer H- dimerdannelse og / eller PI-stabling interaktioner mellem fluoroforen molekyler beliggende inden hinandens Förster radius resultat i Forster resonansenergioverførsel (FRET) mellem de fluorochrom molekyler. ved lav koncentration i rummet mellem fluoroforen molekyler stiger, og derved forhindre pi-stabling interaktion og H-dimerdannelse og resulterer i høj fluorescensemission. Kontakten mellem høj og lav koncentration og den ledsagende fluorescensundertrykkelse og aktivering er en lovende strategi, der kan udnyttes til optisk billeddannelse 22. I denne henseende, indkapsling af høje koncentrationer af NIRF farvestof DY-676-COOH i det vandige indre af liposomer er flere favorable til in vivo billeddannelse end det frie farvestof. Udfordringen af ​​metoden ligger først og fremmest i den korrekte indkapsling og for det andet, i valideringen af ​​de fordele, der følger af at indkapsle høje koncentrationer af farvestoffet. Sammenligning af billeddannende egenskaber bratkølede liposomer med den frie farvestof og også med en liposomformulering ikke-standset med lave koncentrationer af farvestoffet er uundværlig. Vi viser ved en simpel, men meget effektiv film hydrering og ekstrudering protokol kombineret med alternative fryse og tø-cykler, som indkapsling af quenching koncentrationer af DY-676-COOH i liposomer er muligt. Andre fremgangsmåder anvendes til at fremstille liposomer, såsom omvendt fase inddampning metode 23 samt ethanol injektion metode 24 aktivere liposompræparat med høje indkapslingseffektiviteter for mange hydrofile stoffer. Imidlertid er arten af ​​det stof, der skal indkapsles, kan påvirke indkapslingseffektiviteten. I realitetenfilmen hydrering og ekstrudering protokol præsenteres her viste den højeste effektivitet til indkapsling af DY-676-COOH. For at illustrere fordelene ved liposomal indkapsling af DY-676-COOH, en zymosan-induceret ødem model, der tillader undersøgelse af inflammatoriske processer inden for et par timer blev anvendt. Her er det vist, at liposomer med høje koncentrationer af det indkapslede DY-676-COOH er mere egnede til hele kroppen in vivo optisk billeddannelse af inflammatoriske processer end det frie farvestof eller den liposomale formulering ikke-quenchet med lave farvestofkoncentrationer. Således den underliggende protokol giver en enkel og hurtig metode til at producere standset fluorescerende liposomer og validering af deres aktivering og billedbehandling potentiale både in vitro og in vivo.

Protocol

BEMÆRK: Alle procedurer er godkendt af den regionale dyr udvalget og i overensstemmelse med internationale retningslinjer for etisk anvendelse af dyr. 1. Fremstilling af materialer og instrumenter Fremstilling af spontant dannede vesikeldispersionen (SFV) Opløses og forberede stamopløsninger af følgende phospholipider: 214 mg / ml ægge-phosphatidylcholin (EPC), 134 mg / ml kolesterol, 122 mg / ml 1,2-distearoyl- sn-glycero-3-phosphoethanolamine- N – [methoxy…

Representative Results

Indkapslingen af ​​høje koncentrationer af fluorescerende farvestoffer, såsom NIRF farvestof DY676-COOH anvendes her i det vandige indre af liposomer fører til et højt niveau af fluorescens quenching. Fluorescens quenching, et fænomen ses med mange fluoroforer i høj koncentration, kan udnyttes i flere in vivo-billeddannelse applikationer, hvor en høj følsomhed og pålidelig detektering af målområdet efterspørges. Anvendelsen af liposomer tilvejebringer også beskyttelse af farvestoffet, der er n?…

Discussion

Da liposomer også kan tjene som fremføringssystemer til fluorescerende farvestoffer, de gør det muligt billeddannelse af target sygdomme. Indkapslingen af ​​høje koncentrationer af fluorescerende farvestoffer, såsom NIRF farvestof DY676-COOH anvendes her, fører til et højt niveau af fluorescens quenching af den indesluttede farvestof. Fluorescens quenching, et fænomen ses med mange fluoroforer i høj koncentration kan udnyttes i flere in vivo imaging applikationer, hvor en høj følsomhed og pålide…

Declarações

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af Deutsche Forschungsgemeinschaft tilskud HI-698 / 10-1 og RU-1652 / 1-1. Vi takker Doreen maj for fremragende teknisk bistand og selskabet DYOMICS GmbH, Jena for deres venlige støtte.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Materials and equipments for preparation of liposomes
egg phospahtidylcholine Avanti Polar Lipids 840051P Dissolve in Chloroform and store in glass vials (214 mg/ml)
cholesterol Sigma C8667 Dissolve in Chloroform and store in glass vials (134 mg/ml)
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) Avanti Polar Lipids 880120P Dissolve in Chloroform and store in glass vials (122 mg/ml)
1,2-dioleoyl-snglycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) Avanti Polar Lipids 810145P Dissolve in Chloroform and store in glass vials (2mg/ml)
Sartorius MC1 (d = 0.01 mg) Sartorius AG Research RC 210 P used for weighing the phospholipids
Rotavapor Büchi Labortechnik AG R-114 used for hydration of phospholipid film
Waterbath Büchi Labortechnik AG R-481 used for hydration of phospholipid film
Vacuum Controller Büchi Labortechnik AG B-720 used for hydration of phospholipid film
Vacobox Büchi Labortechnik AG B-177 used for hydration of phospholipid film
Circulation Chiller LAUDA DR. R. WOBSER
GMBH & CO. KG
WKL 230 used for hydration of phospholipid film
DY-676-COOH Dyomics GmbH 676-00 Dissolve in 10 mM Tris and store stock at -20°C
Tris-(Hydroxymethyl)-aminomethan Applichem A1086 buffer 10 mM, pH 7.4
Trichlormethan Carl Roth GmbH + Co. KG Y015.2 used for liposome preparation
Sonicator Merck Eurolab GmbH USR 170 H used for liposome preparation
Vortex Genie 2 (Pop-off Cup, No. 146-3011-00) Scientific Industries Inc. SI-0256 used for liposome preparation
Sephadex G25 medium  GE Healthcare Europe GmbH 17-0033-01 used for liposome purification
Triton X100 Ferak Berlin GmbH 505002 used to destruct liposomes  for dye quantification
LiposoFast-Basic Avestin Inc. used for the extrusion of liposomes
Polycarbonate filter membrane, 100 nm (Whatman Nucleopore Trans Etch Membrane, NUCLEPR PC 19 MM, 0.1 U) VWR used for the extrusion of liposomes via LiposoFast-Basic
Fluostar Optima BMG Labtech used for dye quantification
Zetasizer Nano ZS Malvern used for the determination of liposome size and zetapotential
Ultracentrifuge  Beckmann Coulter GmbH XL 80 used for concentration of the samples
Rotor Beckmann Coulter GmbH SW 55 TI used for concentration of the samples
Materials and equipments for the evaluation of liposome and optical imaging 
Zymosan-A from Saccharomyces cereviciae Sigma Z4250-250MG used for induction of inflammation
Isotonic Saline (0.9) Fresenius GmbH PZN-2159621 used for the dilution of Zymosan-A
Isoflurane vaporizer Ohmeda Isotec 4 used for anesthesizing animals
Isoflurane Actavis GmbH  PZN-7253744 anesthesia
Thermo Mat Pro 20 W Lucky Reptile 61202-HTP-20 used to keep animals warm during anesthesia
Omnican-F (1 ml injection)  Braun PZN-3115465 used for subcutaneous and intravenous application of probes
Panthenol eye cream Jenapharm PZN-3524531 used to prevent dryness of the eyes of animals during anesthesia
Hanks buffered saline solution PAA Laboratories /Biochrom AG L2045 w/o Mg2+, Ca2+ and phenol red. For dilution of probes and for washing of cells
8-Well chamber slides BD Biosciences 354108 used for cell culture followed by microscopy 
Cell culture flasks Greiner BioOne
Cell culture media Gibco (life technologies GmbH)
Fetal calf serum  Invitrogen
Poly-L-Lysine solution (0,01% – 50 ml) Sigma P4832 used to coat cell culture chamber slides
Mountant Permafluor ThermoScientific  S21022-3 Mounting solution for microscopy
Hoechst-33258 AppliChem DNA stain for microscopy
Hera-Safe Heraeus Instruments sterile work bench used for cell culture
HERA cell Heraeus Instruments Incubator used for cell culture
LSM510-Meta Zeiss used for confocal microscopy
Maestro-TM in vivo fluorescence imaging system CRi, Woburn used for whole body fluorescence imaging of small animals
Spectrophotometer (Ultrospec 4300 pro UV) GE Healthcare used for measurement of absorption
Spectrofluorometer (Jasco FP-6200) Jasco used for measurement of fluorescence emission
Animals
NMRI mice (8-12 weeks old, male) Elevage Janvier, France used for inflammation trials

Referências

  1. Buse, J., El-Aneed, A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond). 5, 1237-1260 (2010).
  2. Lim, S. B., Banerjee, A., Onyuksel, H. Improvement of drug safety by the use of lipid-based nanocarriers). Journal of controlled release : official journal of the Controlled Release Society. 163, 34-45 (2012).
  3. Cabanes, A., et al. Enhancement of antitumor activity of polyethylene glycol-coated liposomal doxorubicin with soluble and liposomal interleukin 2. Clinical cancer research : an official journal of the American Association for Cancer Research. 5, 687-693 (1999).
  4. Gabizon, A., Shmeeda, H., Grenader, T. Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 45, 388-398 (2012).
  5. Balasubramanian, S. V., Bruenn, J., Straubinger, R. M. Liposomes as formulation excipients for protein pharmaceuticals: a model protein study. Pharmaceutical research. 17, 344-350 (2000).
  6. Meyer, J., Whitcomb, L., Collins, D. Efficient encapsulation of proteins within liposomes for slow release in vivo. Biochemical and biophysical research communications. 199, 433-438 (1994).
  7. Mayer, L. D., Hope, M. J., Cullis, P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochimica et biophysica acta. 858, 161-168 (1986).
  8. Mayer, L. D., Bally, M. B., Hope, M. J., Cullis, P. R. Techniques for encapsulating bioactive agents into liposomes. Chemistry and physics of lipids. 40, 333-345 (1986).
  9. Walde, P., Ichikawa, S. Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomolecular engineering. 18, 143-177 (2001).
  10. Weissleder, R., Ntziachristos, V. Shedding light onto live molecular targets. Nature medicine. 9, 123-128 (2003).
  11. Licha, K., Riefke, B., Ebert, B., Grotzinger, C. Cyanine dyes as contrast agents in biomedical optical imaging. Academic radiology. 9 Suppl 2, S320-S322 (2002).
  12. Pauli, J., et al. Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging. Journal of fluorescence. 20, 681-693 (2010).
  13. Holzer, W., et al. Photostability and thermal stability of indocyanine green. Journal of photochemistry and photobiology. B, Biology. 47, 155-164 (1998).
  14. Gandorfer, A., Haritoglou, C., Kampik, A. Retinal damage from indocyanine green in experimental macular surgery. Investigative ophthalmology & visual science. 44, 316-323 (2003).
  15. Saxena, V., Sadoqi, M., Shao, J. Degradation kinetics of indocyanine green in aqueous solution. Journal of pharmaceutical. 92, 2090-2097 (2003).
  16. Kodjikian, L., et al. Toxic effects of indocyanine green, infracyanine green, and trypan blue on the human retinal pigmented epithelium. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 243, 917-925 (2005).
  17. Sevick-Muraca, E. M., Houston, J. P., Gurfinkel, M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Current opinion in chemical biology. 6, 642-650 (2002).
  18. Bremer, C., Ntziachristos, V., Weissleder, R. Optical-based molecular imaging: contrast agents and potential medical applications. European radiology. 13, 231-243 (2003).
  19. Hilderbrand, S. A., Kelly, K. A., Weissleder, R., Tung, C. H. Monofunctional near-infrared fluorochromes for imaging applications. Bioconjugate chemistry. 16, 1275-1281 (2005).
  20. Langhals, H., et al. Cyanine dyes as optical contrast agents for ophthalmological surgery. Journal of medicinal chemistry. 54, 3903-3925 (2011).
  21. Pauli, J., et al. An in vitro characterization study of new near infrared dyes for molecular imaging. European journal of medicinal chemistry. 44, 3496-3503 (2009).
  22. Ogawa, M., Kosaka, N., Choyke, P. L., Kobayashi, H. H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. ACS chemical biology. 4, 535-546 (2009).
  23. Szoka, F., Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc.Natl.Acad.Sci.U.S.A. 75, 4194-4198 (1978).
  24. Batzri, S., Korn, E. D. Single bilayer liposomes prepared without sonication. Biochimica et biophysica acta. 298, 1015-1019 (1973).
  25. Fahr, A., van Hoogevest, P., May, S., Bergstrand, N., ML, S. L. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 26, 251-265 (2005).
  26. New, R. R. C. . Liposomes a practical approach. , (1990).
  27. Barenholz, Y., et al. A simple method for the preparation of homogeneous phospholipid vesicles. Bioquímica. 16, 2806-2810 (1977).
  28. Schwendener, R. A. The preparation of large volumes of homogeneous, sterile liposomes containing various lipophilic cytostatic drugs by the use of a capillary dialyzer. Cancer drug delivery. 3, 123-129 (1986).
  29. Pauli, J., et al. Suitable labels for molecular imaging–influence of dye structure and hydrophilicity on the spectroscopic properties of IgG conjugates. Bioconjugate chemistry. 22, 1298-1308 (2011).
  30. Wu, P., Brand, L. Resonance energy transfer: methods and applications. Analytical biochemistry. 218, 1-13 (1994).
  31. Stark, B., Pabst, G., Prassl, R. Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: Effects of cryoprotectants on structure. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 41, 546-555 (2010).
  32. Tansi, F. L., et al. Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo. Small. 9, 3659-3669 (2013).
  33. Chen, R. F., Knutson, J. R. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Analytical biochemistry. 172, 61-77 (1988).
  34. Windler-Hart, S. L., Chen, K. Y., Chenn, A. A cell behavior screen: identification, sorting, and enrichment of cells based on motility. BMC cell biology. 6, 14 (2005).
  35. Swirski, F. K., et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 325, 612-616 (2009).
  36. Erdo, F., Torok, K., Aranyi, P., Szekely, J. I. A new assay for antiphlogistic activity: zymosan-induced mouse ear inflammation. Agents and actions. 39, 137-142 (1993).
  37. Ajuebor, M. N., et al. Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. Journal of leukocyte biology. 63, 108-116 (1998).
  38. Ajuebor, M. N., Das, A. M., Virag, L., Szabo, C., Perretti, M. Regulation of macrophage inflammatory protein-1 alpha expression and function by endogenous interleukin-10 in a model of acute inflammation. Biochemical and biophysical research communications. 255, 279-282 (1999).
  39. Ajuebor, M. N., et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J Immunol. 162, 1685-1691 (1999).
  40. Binstadt, B. A., et al. Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nature. 7, 284-292 (2006).
  41. Ishida, T., Harashima, H., Kiwada, H. Liposome clearance. Bioscience reports. 22, 197-224 (2002).
  42. Dobrovolskaia, M. A., McNeil, S. E. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. Journal of controlled release : official journal of the Controlled Release Society. 172, 456-466 (2013).
  43. Szebeni, J., et al. Prevention of infusion reactions to PEGylated liposomal doxorubicin via tachyphylaxis induction by placebo vesicles: a porcine model. Journal of controlled release : official journal of the Controlled Release Society. 160, 382-387 (2012).
check_url/pt/52136?article_type=t

Play Video

Citar este artigo
Tansi, F. L., Rüger, R., Rabenhold, M., Steiniger, F., Fahr, A., Hilger, I. Fluorescence-quenching of a Liposomal-encapsulated Near-infrared Fluorophore as a Tool for In Vivo Optical Imaging. J. Vis. Exp. (95), e52136, doi:10.3791/52136 (2015).

View Video