Summary

Modélisation des muqueuses candidose larves de poisson zèbre par injection vessie natatoire

Published: November 27, 2014
doi:

Summary

In vivo spatio-temporal interactions of pathogen and immune defenses at the mucosal level are not easily imaged in existing vertebrate hosts. The method presented here describes a versatile platform to study mucosal candidiasis in live vertebrates using the swimbladder of the juvenile zebrafish as an infection site.

Abstract

La défense précoce contre les agents pathogènes des muqueuses consiste à la fois une barrière épithéliale et les cellules immunitaires innées. Le immunocompétence des deux, et de leur intercommunication, sont primordiaux pour la protection contre les infections. Les interactions de cellules immunitaires innées et épithéliales avec un agent pathogène sont les mieux étudiés in vivo, où le comportement complexe se déroule dans le temps et l'espace. Cependant, les modèles existants ne permettent pas facile imagerie spatio-temporelle de la bataille avec des agents pathogènes au niveau de la muqueuse.

Le modèle développé ici crée une infection de la muqueuse par injection directe de l'agent pathogène fongique, Candida albicans, dans la vessie natatoire du poisson zèbre juvénile. L'infection résultant permet imagerie à haute résolution du comportement des cellules épithéliales et immunitaire innée à travers le développement de la maladie des muqueuses. La polyvalence de cette méthode permet pour interrogatoire de l'hôte à sonder la séquence détaillée des événements immunitaire conduisant à phagocyte recrutement et d'examiner les rôles de types cellulaires particuliers et voies moléculaires dans la protection. De plus, le comportement de l'agent pathogène en fonction de l'attaque immunitaire peut imager simultanément en utilisant la protéine fluorescente exprimant C. albicans. Résolution spatiale accrue de l'interaction hôte-pathogène est également possible en utilisant la technique de dissection vessie natatoire rapide décrite.

Le modèle d'infection de la muqueuse décrite ici est simple et hautement reproductible, ce qui en fait un outil précieux pour l'étude de la candidose buccale. Ce système peut également être largement traduisible à d'autres pathogènes des muqueuses comme les microbes mycobactériennes, bactériennes ou virales qui infectent normalement à travers des surfaces épithéliales.

Introduction

Mucosal infections can lead to life threatening bloodstream infections due to the damage of the epithelial barrier, which allows pathogens access to the systemic environment1,2. In addition, mucosal infections can also cause significant immunopathology even when contained externally3-5. The commensal unicellular fungus Candida albicans is present in the majority of the population in the oral cavity and other mucosal sites6-9. Although normally contained by innate and adaptive immune responses, innate immune defects and medical interventions can lead to severe mucosal candidiasis. The assault on the epithelial barrier results in an increased risk of life threatening disseminated disease as well as immunopathology, as in the case of vulvo-vaginal candidiasis, additionally C. albicans colonization has been linked with lung immune homeostasis10,11. Disseminated candidiasis is now the fourth most common bloodstream infection in intensive care units12 and mortality as high as 40% makes it a major concern. Due to the increase in immunomodulatory treatments for patients with autoimmune diseases, cancer or organ transplants, it is imperative to understand the interaction between this pathogen and the mucosal immune compartment.

The majority of cell biological advances regarding C. albicans-cell interactions at the mucosal level come from in vitro13-15 and murine models16-18. Both these approaches have distinct advantages, but the ability to image live cells at high resolution in an intact host has limited the temporal and spatial characterization of the infection. For these studies, there is the need for an in vivo model where the interaction of pathogen, innate immune and epithelial cells can be visualized in an intact vertebrate host.

The zebrafish has emerged as an invaluable tool for the understanding of human disease, mainly due to its transparency and amenability to genetic manipulation. Cell and organ development have been imaged in exquisite detail, which has led to the description of novel immune cell behaviors, such as T cell behavior in the developing thymus19 or the battle between intracellular mycobacteria and phagocytes20-22. Recent work has described intestinal microbe-host interactions in zebrafish and shown that microbial colonization of the intestinal tract affects host intestinal physiology and resistance to other infections23,24. Furthermore, infection through the gut epithelium has been described for several pathogens.

In contrast to the intestinal tract, the swimbladder represents a more isolated and complementary mucosal model. This organ is an extension of the developing gut tube and forms anteriorly to the liver and pancreas25,26. It produces surfactant, mucus and antimicrobial peptides27,28 and anatomically, as well as ontogenetically, this organ is considered a homologue of the mammalian lung29,30. Since the pneumatic duct remains connected to the gut in the zebrafish, this allows for immersion infection to occur naturally. Remarkably, the only known naturally occurring infections of fish with Candida species are C. albicans infections in the swimbladder31. We recently described an experimental immersion infection model where C. albicans infects the swimbladder, and found that this infection recapitulates some of the hallmarks of C. albicans-epithelial interaction in vitro32,33.

In the method presented here, the original immersion infection model is improved by directly injecting C. albicans into the swimbladder of 4 days post fertilization (dpf) zebrafish. This allows for precise temporal control of infection as well as a highly reproducible inoculum. It permits detailed intravital imaging, coupled with the versatility of the zebrafish model. As an example of what can be done with this method, we present the spatio-temporal dynamics of C. albicans growth along with neutrophil recruitment to the site of infection. Because zebrafish swimbladder tissue is challenging to image intravitally, we also present a rapid swimbladder dissection technique that improves fluorescence signal and microscopic resolution. These methods expand the toolbox for fungal, immunological, and aquaculture research as well as describing a novel infection route that may be translated to model other fungal, bacterial or viral infections of mucosal surfaces.

Protocol

REMARQUE: Tous les protocoles et les expériences de soins de poisson zèbre ont été effectuées conformément aux directives du NIH sous institutionnel de protection des animaux et l'utilisation Comité (IACUC) A2012-11-03 protocole. 1. poisson zèbre élevage pour quatre jours après la fécondation Recueillir AB poisson zèbre, ou d'autres lignées transgéniques, dans le premier poste de fertilisation 3 heures, comme montré dans un autre 34 vidéo. <…

Representative Results

La micro-injection dans la vessie natatoire postérieure La méthode expérimentale présentée ici décrit l'injection d'une dose constante de C. des cellules de levure albicans dans la vessie natatoire des 4 dpf poisson zèbre. Des travaux antérieurs avec le modèle d'immersion suggère que la réponse immunitaire de la vessie natatoire à C. albicans est similaire à mammifère candidose des muqueuses 32. Ici, nous démontrons une méthode d…

Discussion

Les progrès et les limites du modèle de la maladie de la micro-injection de vessie natatoire

Le modèle présenté ici est une extension du modèle d'immersion de la candidose des muqueuses décrit dans Gratacap et al (2013).; il ajoute les avantages d'un temps d'infection contrôlée, une dose d'infection hautement reproductibles, et donc une meilleure efficacité. Nous démontrons ici de nouvelles méthodes qui permettent la documentation temporelle non-invasive de …

Declarações

The authors have nothing to disclose.

Acknowledgements

Les auteurs remercient le Dr Le Trinh et le Dr Tobin pour fournir généreusement l'α-caténine: ligne de poissons de citrine et Bill Jackman pour nous permettre de faire le tournage dans son laboratoire. Les auteurs reconnaissent les sources de financement Instituts nationaux de la santé (subventions 5P20RR016463, 8P20GM103423 et R15AI094406) et l'USDA (Projet # ME0-H-1-00517-13). Ce manuscrit est publié en tant que principal Agriculture et foresterie Expérience publication station numéro 3371.

Materials

Name Company Catalog Number Comments
1.7 mL tubes Axygen MCT-175-C
Deep Petri dishes Fisher Scientific 89107-632
Transfer pipettes Fisher Scientific 13-711-7M
Yeast Extract VWR Scientific 90000-726
Peptone VWR Scientific 90000-264
Dextrose Fisher Scientific D16-1
Agar VWR Scientific 90000-760
Fine tweezers (Dumont Dumoxel #5) Fine Science Tools 11251-30
Wooden Dowels VWR Scientific 10805-018
Low Melt Agarose VWR Scientific 12001-722
Flaming Brown Micropipette Puller Sutter Instruments P-97
Borosilicate capillary Sutter Instruments BF120-69-10
MPPI-3 Injection system Applied Scientific Instrumentation MPPI-3
Back Pressure Unit Applied Scientific Instrumentation BPU
Micropipette Holder kit Applied Scientific Instrumentation MPIP
Foot Switch Applied Scientific Instrumentation FSW
Micromanipulator Applied Scientific Instrumentation MM33
Magnetic Base Applied Scientific Instrumentation Magnetic Base
Tricaine methane sulfonate Western Chemical Inc. MS-222
Dissecting Scope Olympus SZ61 top SZX-ILLB2-100 base
Confocal Microscope Olympus IX-81 with FV-1000 laser scanning confocal system
20x microscope objective Olympus UPlanSApo 20x/0.75
Roller drum New Brunswick Scientific TC-7
Microloader pipette tips Eppendorf 930001007
Glass culture tubes (16 x 150 mm) VWR Scientific 60825-435
NaCl VWR Scientific BDH4534-500GP
KCl VWR Scientific BDH4532-500GP
MgSO4 VWR Scientific BDH0246-500GP
HEPES (Corning) VWR Scientific BDH4520-500GP
Children clay (Play-Doh) Hasbro
CaCl2 Fisher Scientific C69-500
Methylene Blue VWR Scientific VW6276-0
PTU Sigma P7629-10G
Petri dishes Fisher Scientific FB0875712
Hemocytometer (Hausser scientific) VWR Scientific 15170-172
Type A immersion oil Blue Marble Products 51935
Centrifuge Eppendorf 5424
Vortex Genie VWR Scientific 14216-184
Agarose (Lonza) VWR Scientific 12001-870
Na2HPO4 Fisher Scientific S374-500
KH2PO4 Fisher Scientific P285-500
Fishing wire Stren
96 well imaging plate (Sensoplate) Greiner Bio-One 655892
High vacuum grease (Dow Corning) VWR Scientific 59344-055
Microslide (25 x 75 mm) VWR Scientific 48300-025
Cover slips (18 x 18 mm), No 1.5 VWR Scientific 48366-045
15 cm Petri dish (Olympus plastics) Genesee Scientific 32-106
Glycerol (EMD chemicals) VWR Scientific EMGX0185-5
24-well culture dish (Olympus plastics) Genesee Scientific 25-107
Weight boats (8.9 cm) VWR Scientific 89106-766

Referências

  1. Peterson, L. W., Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 14 (3), 141-153 (2014).
  2. Elinav, E., Henao-Mejia, J., Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6 (1), 4-13 (2013).
  3. Sansonetti, P. J. To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol. 4 (1), 8-14 (2011).
  4. Tlaskalová-Hogenová, H., Stěpánková, R., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 8 (2), 110-120 (2011).
  5. Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol. 9 (11), 778-788 (2009).
  6. Scully, C., el-Kabir, M., Samaranayake, L. P. Candida and oral candidosis: a review. Crit Rev Oral Biol Med. 5 (2), 125-157 (1994).
  7. Reef, S. E., Lasker, B. A., et al. Nonperinatal nosocomial transmission of Candida albicans in a neonatal intensive care unit: prospective study. J Clin Microbiol. 36 (5), 1255-1259 (1998).
  8. Soll, D. R., Galask, R., Schmid, J., Hanna, C., Mac, K., Morrow, B. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J Clin Microbiol. 29 (8), (1991).
  9. Rindum, J. L., Stenderup, A., Holmstrup, P. Identification of Candida albicans types related to healthy and pathological oral mucosa. J Oral Pathol Med. 23 (9), 406-412 (1994).
  10. Mear, J. B., Gosset, P., et al. Candida albicans airway exposure primes the lung innate immune response against Pseudomonas aeruginosa infection through innate lymphoid cell recruitment and IL-22 associated mucosal response. Infect Immun. 82 (1), 306-315 (2013).
  11. Faro-Trindade, I., Willment, J. A., et al. Characterisation of innate fungal recognition in the lung. PLoS ONE. 7 (4), 35675 (2012).
  12. Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P., Edmond, M. B. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 39 (3), 309-317 (2004).
  13. Schaller, M., Zakikhany, K., Naglik, J. R., Weindl, G., Hube, B. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc. 1 (6), 2767-2773 (2006).
  14. Weindl, G., Naglik, J. R., et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. Clin Invest. 117 (12), 3664-3672 (2007).
  15. Moyes, D. L., Runglall, M., et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host and Microbe. 8 (3), 225-235 (2010).
  16. Conti, H. R., Shen, F., et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 206 (2), 299-311 (2009).
  17. Hise, A. G., Tomalka, J., et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 5 (5), 487-497 (2009).
  18. Gladiator, A. A., Wangler, N. N., Trautwein-Weidner, K. K., Leibundgut-Landmann, S. S. Cutting Edge: IL-17-Secreting Innate Lymphoid Cells Are Essential for Host Defense against Fungal Infection. J Immunol. 190 (2), 521-525 (2013).
  19. Hess, I., Boehm, T. Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions. Immunity. 36 (2), 298-309 (2012).
  20. Roca, F. J., Ramakrishnan, L. TNF Dually Mediates Resistance and Susceptibility to Mycobacteria via Mitochondrial Reactive Oxygen Species. Cell. 153 (3), 521-534 (2013).
  21. Tobin, D. M., Vary, J. C., et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell. 140 (5), 717-730 (2010).
  22. Cambier, C. J., Takaki, K. K., et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature. 505 (7482), 218-222 (2014).
  23. Semova, I., Carten, J. D., et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host and Microbe. 12 (3), 277-288 (2012).
  24. Rendueles, O., Ferrières, L., et al. A new zebrafish model of Oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathog. 8 (7), 1002815 (2012).
  25. Field, H., Ober, E., Roeser, T., Stainier, D. Formation of the digestive system in zebrafish I. Liver morphogenesis. Dev Biol. 253 (2), 279-290 (2003).
  26. Field, H., Dong, P., Beis, D., Stainier, D. Formation of the digestive system in zebrafish. Dev Biol. 261 (1), 197-208 (2003).
  27. Sullivan, L., Daniels, C., Phillips, I., Orgeig, S., Whitsett, J. Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant. J Mol Evol. 46 (2), 131-138 (1998).
  28. Oehlers, S. H., Flores, M. V., Chen, T., Hall, C. J., Crosier, K. E., Crosier, P. S. Topographical distribution of antimicrobial genes in the zebrafish intestine. Dev Comp Immunol. 35 (3), 385-391 (2011).
  29. Winata, C., Korzh, S., Kondrychyn, I., Zheng, W., Korzh, V., Gong, Z. Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev Biol. 331 (2), 22-236 (2009).
  30. Zheng, W., Wang, Z., Collins, J. E., Andrews, R. M., Stemple, D., Gong, Z. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PLoS ONE. 6 (8), 24019 (2011).
  31. Galuppi, R., Fioravanti, M., Delgado, M., Quaglio, F., Caffara, M., Tampieri, M. Segnalazione di due casi do micosi della vescica natatoria in Sparus aurata e Carrassius auratus. Bollettino Societa Italiana di Patologic. 32, 26-34 (2001).
  32. Gratacap, R. L., Rawls, J. F., Wheeler, R. T. Mucosal candidiasis elicits NF-κB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis Model Mech. 6 (5), 1260-1270 (2013).
  33. Brothers, K. M., Gratacap, R. L., Barker, S. E., Newman, Z. R., Norum, A., Wheeler, R. T. NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog. 9 (10), (2013).
  34. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J. Vis. Exp. (25), (2009).
  35. Anaissie, E. J., Bodey, G. P. Fungal infections in patients with cancer. Pharmacotherapy. 10 (6 pt 3), 1648-1698 (1990).
  36. Fidel, P. L., Barousse, M., et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 72 (5), 2939-2946 (2004).
  37. Akova, M., Akalin, H. E., et al. Efficacy of fluconazole in the treatment of upper gastrointestinal candidiasis in neutropenic patients with cancer: factors influencing the outcome. Clin Infect Dis. 18 (3), 298-304 (1994).
  38. Farah, C. S., Elahi, S., et al. T cells augment monocyte and neutrophil function in host resistance against oropharyngeal candidiasis. Infect Immun. 69 (10), 6110-6118 (2001).
  39. Renshaw, S. A., Loynes, C. A., Trushell, D. M. I., Elworthy, S., Ingham, P. W., Whyte, M. K. B. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108 (13), 3976-3978 (2006).
  40. Kanther, M., Sun, X., et al. Microbial Colonization Induces Dynamic Temporal and Spatial Patterns of NF-κB Activation in the Zebrafish Digestive Tract. Gastroenterology. 141 (1), 197-207 (2011).
  41. Trinh, L. A., Hochgreb, T., et al. A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev. 25 (21), 2306-2320 (2011).
  42. Trinh, L. A., Fraser, S. E., Moens, C. B. Zebrafish Neural Tube Morphogenesis Requires Scribble-Dependent Oriented Cell Divisions. Curr Biol. 21 (1), 79-86 (2011).
  43. Oehlers, S. H. B., Flores, M. V., et al. Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Dev Comp Immunol. 34 (3), 352-359 (2010).
  44. Bast, D. J., Yue, M., et al. Novel murine model of pneumococcal pneumonia: use of temperature as a measure of disease severity to compare the efficacies of moxifloxacin and levofloxacin. Antimicrob Agents Chemother. 48 (9), 3343-3348 (2004).
  45. Davis, J., Clay, H., Lewis, J., Ghori, N., Herbomel, P., Ramakrishnan, L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 17 (6), 693-702 (2002).
  46. Pack, M., Solnica-Krezel, L., et al. Mutations affecting development of zebrafish digestive organs. Development. 123, 321-328 (1996).
  47. Le Guyader, D., Redd, M. J., et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood. 111 (1), 132-141 (2008).
  48. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn. 203 (3), 253-310 (1995).
  49. Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N., Engeszer, R. E. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn. 238 (12), 2975-3015 (2009).
  50. Noverr, M. C., Huffnagle, G. B. Does the microbiota regulate immune responses outside the gut. Trends in Microbiology. 12 (12), 562-568 (2004).
  51. Huffnagle, G. B. The microbiota and allergies/asthma. PLoS Pathog. 6 (5), 1000549 (2010).
  52. Kim, Y. -. G., Udayanga, K. G. S., Totsuka, N., Weinberg, J. B., Núñez, G., Shibuya, A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe. 15 (1), 95-102 (2014).
check_url/pt/52182?article_type=t

Play Video

Citar este artigo
Gratacap, R. L., Bergeron, A. C., Wheeler, R. T. Modeling Mucosal Candidiasis in Larval Zebrafish by Swimbladder Injection. J. Vis. Exp. (93), e52182, doi:10.3791/52182 (2014).

View Video